随着通信、对抗和测试设备的工作带宽逐渐增加,对相应功率放大器的带宽要求也越来越宽,而基于第三代半导体材料的GaN HEMT具备宽工作频带的特性,有满足新需求的潜力。运用传输线变压器(Transmission Line Transformer,TLT)加载铁氧体磁...随着通信、对抗和测试设备的工作带宽逐渐增加,对相应功率放大器的带宽要求也越来越宽,而基于第三代半导体材料的GaN HEMT具备宽工作频带的特性,有满足新需求的潜力。运用传输线变压器(Transmission Line Transformer,TLT)加载铁氧体磁芯的技术对GaN HEMT进行宽带匹配,研制了工作于20~1 000 MHz的功率放大器。通过建立和优化TLT模型,拓展频率低端,最终测试结果表明,在整个带宽内,输出功率≥107 W,增益≥11.3 d B,功率附加效率≥34.5%,成功将此功率量级的宽带功率放大器工作倍频层由3拓展到5以上。此功率放大器适用于同时要求宽带宽和高功率的系统中,如EMC测试、电子对抗和宽带通讯等。展开更多
Developing high-performance electromagnetic absorbing materials remains a challenge.In this work,Gd-Co ferrite@carbon core-shell structure composites were synthesized by a two-step hydrothermal method.The effects of r...Developing high-performance electromagnetic absorbing materials remains a challenge.In this work,Gd-Co ferrite@carbon core-shell structure composites were synthesized by a two-step hydrothermal method.The effects of rare earth Gd doping amount on the microstructure and electromagnetic wave absorption properties of cobalt ferrite@carbon composites were mainly studied.The results show that an appropriate amount of Gd doping can refine the crystal grain size of cobalt ferrite@carbon composites.However,when the doping amount of Gd exceeds the solid solubility threshold,the secondary phase GdFeO_(3)will be generated and the grain size will increase.When the doping amount of Gd is x=0.04,the reflection loss(RL) of the CoFe_(1.96)Gd_(0.04)O_(4)@C composites reaches the minimum value of -9.26 dB at the absorption layer thickness of 2.0 mm and a frequency of 13.67 GHz,and the effective absorption band(EAB) is 5.01 GHz(10.95-15.96 GHz).Compared with the CoFe_(2)O_(4)@C composites,the RL of the CoFe_(1.96)Gd_(0.04)O_(4)@C composites is increased by 79.35%,and the EAB is broadened by 3.51%.Gd ions enhance the dielectric loss through the grain size effect,and the increase of magnetocrystalline anisotropy enhances the magnetic loss.The CoFe_(1.96)Gd_(0.04)O_(4)@C composites have excellent impedance matching,which relies on the strong magnetic loss of ferrite,the interface polarization,and dipole polarization formed by the carbon shell to attenuate electromagnetic waves.展开更多
This paper addresses the manipulation of structural,morphology,optical and magnetic properties of LiCo0.25Zn0.25Fe2 O4 ferrite via incorporation of different proportions of La^3+at the expense of iron ions using a sol...This paper addresses the manipulation of structural,morphology,optical and magnetic properties of LiCo0.25Zn0.25Fe2 O4 ferrite via incorporation of different proportions of La^3+at the expense of iron ions using a sol-gel method.The samples were characterized using the X-ray diffraction technique(XRD),Fourier transform infrared(FT-IR)spectroscopy,the energy dispersive X-ray spectra(EDX),inductively coupled plasma optical emission spectroscopy(ICP-OES),high resolution scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET)surface area analysis,ultraviolet-diffuse reflectance spectroscopy(UV-DRS),and vibrating sample magnetometer(VSM)technique.The Rietveld refinements of the samples indicate that at higher concentrations of La^3+,nanostructures with dual phase,i.e.cubic spinel and orthorhombic LaFeO3 perovskite with space group(Pbnm)appear.Optical studies show that the energy band gap(Eg)of the bare LiCo0.25Zn0.25Fe2 O4 ferrite sample(2.18 eV)reaches up to 2.47 eV at x=0.06 and above this concentration,it drops sharply to 2.00 eV.Although the saturation magnetization and the coercivity of LiCo0.25Zn0.25LaxFe2-xO4 are lower than that of LiCo0.25Zn0.25Fe2 O4 NPs.Overall,the superparamagnetic nature and low values of saturation magnetization and coercivity of LiCo0.25Zn0.25LaxFe2-xO4 NPs are suitable to be applied in transformers core.展开更多
文摘随着通信、对抗和测试设备的工作带宽逐渐增加,对相应功率放大器的带宽要求也越来越宽,而基于第三代半导体材料的GaN HEMT具备宽工作频带的特性,有满足新需求的潜力。运用传输线变压器(Transmission Line Transformer,TLT)加载铁氧体磁芯的技术对GaN HEMT进行宽带匹配,研制了工作于20~1 000 MHz的功率放大器。通过建立和优化TLT模型,拓展频率低端,最终测试结果表明,在整个带宽内,输出功率≥107 W,增益≥11.3 d B,功率附加效率≥34.5%,成功将此功率量级的宽带功率放大器工作倍频层由3拓展到5以上。此功率放大器适用于同时要求宽带宽和高功率的系统中,如EMC测试、电子对抗和宽带通讯等。
基金financially supported by the National Natural Science Foundation of China (No.51372108)。
文摘Developing high-performance electromagnetic absorbing materials remains a challenge.In this work,Gd-Co ferrite@carbon core-shell structure composites were synthesized by a two-step hydrothermal method.The effects of rare earth Gd doping amount on the microstructure and electromagnetic wave absorption properties of cobalt ferrite@carbon composites were mainly studied.The results show that an appropriate amount of Gd doping can refine the crystal grain size of cobalt ferrite@carbon composites.However,when the doping amount of Gd exceeds the solid solubility threshold,the secondary phase GdFeO_(3)will be generated and the grain size will increase.When the doping amount of Gd is x=0.04,the reflection loss(RL) of the CoFe_(1.96)Gd_(0.04)O_(4)@C composites reaches the minimum value of -9.26 dB at the absorption layer thickness of 2.0 mm and a frequency of 13.67 GHz,and the effective absorption band(EAB) is 5.01 GHz(10.95-15.96 GHz).Compared with the CoFe_(2)O_(4)@C composites,the RL of the CoFe_(1.96)Gd_(0.04)O_(4)@C composites is increased by 79.35%,and the EAB is broadened by 3.51%.Gd ions enhance the dielectric loss through the grain size effect,and the increase of magnetocrystalline anisotropy enhances the magnetic loss.The CoFe_(1.96)Gd_(0.04)O_(4)@C composites have excellent impedance matching,which relies on the strong magnetic loss of ferrite,the interface polarization,and dipole polarization formed by the carbon shell to attenuate electromagnetic waves.
基金the Materials Science Unit,Radiation Physics Department,National Center for Radiation Research and Technology,Egypt,for financing and supporting this study under the project Nanostructured Magnetic Materials。
文摘This paper addresses the manipulation of structural,morphology,optical and magnetic properties of LiCo0.25Zn0.25Fe2 O4 ferrite via incorporation of different proportions of La^3+at the expense of iron ions using a sol-gel method.The samples were characterized using the X-ray diffraction technique(XRD),Fourier transform infrared(FT-IR)spectroscopy,the energy dispersive X-ray spectra(EDX),inductively coupled plasma optical emission spectroscopy(ICP-OES),high resolution scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET)surface area analysis,ultraviolet-diffuse reflectance spectroscopy(UV-DRS),and vibrating sample magnetometer(VSM)technique.The Rietveld refinements of the samples indicate that at higher concentrations of La^3+,nanostructures with dual phase,i.e.cubic spinel and orthorhombic LaFeO3 perovskite with space group(Pbnm)appear.Optical studies show that the energy band gap(Eg)of the bare LiCo0.25Zn0.25Fe2 O4 ferrite sample(2.18 eV)reaches up to 2.47 eV at x=0.06 and above this concentration,it drops sharply to 2.00 eV.Although the saturation magnetization and the coercivity of LiCo0.25Zn0.25LaxFe2-xO4 are lower than that of LiCo0.25Zn0.25Fe2 O4 NPs.Overall,the superparamagnetic nature and low values of saturation magnetization and coercivity of LiCo0.25Zn0.25LaxFe2-xO4 NPs are suitable to be applied in transformers core.