The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich p...The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl 展开更多
PCR-single-strand conformation polymorphism (SSCP) and Southern blotting tech-niques were adopted to investigate microbial community dynamics in a sulfate-reducing bioreactor caused by decreasing influent alkalinity. ...PCR-single-strand conformation polymorphism (SSCP) and Southern blotting tech-niques were adopted to investigate microbial community dynamics in a sulfate-reducing bioreactor caused by decreasing influent alkalinity. Experimental results indicated that the sulfate-removal rate approached 87% in 25 d under the conditions of influent alkalinity of 4000 mg/L (as CaCO3) and sul-fate-loading rate of 4.8 g/(L·d), which indicated that the bioreactor started up successfully. The analy-sis of microbial community structure in this stage showed that Lactococcus sp., Anaerofilum sp. and Kluyvera sp. were dominant populations. It was found that when influent alkalinity reduced to 1000 mg/L, sulfate-removal rate decreased rapidly to 35% in 3 d. Then influent alkalinity was increased to 3000 mg/L, the sulfate-removal rate rose to 55%. Under these conditions, the populations of Dysgo-nomonas sp., Sporobacte sp., Obesumbacterium sp. and Clostridium sp. got to rich, which predomi-nated in the community together with Lactococcus sp., Anaerofilum sp. and Kluyvera sp. However, when the alkalinity was decreased to 1500 mg/L, the sulfate-removal rate rose to and kept stable at 70% and populations of Dysgonomonas sp., Sporobacter sp. and Obesumbacterium sp. died out, while some strains of Desulfovibrio sp. and Clostridium sp. increased in concentration. In order to determine the minimum alkalinity value that the system could tolerate, the influent alkalinity was de-creased from 1500 to 400 mg/L secondly. This resulted in the sulfate-removal rate, pH value and ef-fluent alkalinity dropping quickly. The amount of Petrotoga sp., Prevotella sp., Kluyvera sp. and Neisseria sp. reduced obviously. The result data from Southern blotting indicated that the amount of sulfate-reducing bacteria (SRBs) decreased with influent alkalinity dropping. Analysis of the microbial community structure and diversity showed that the SRBs populations were very abundant in the in-oculated activated sludge and the alkalinity decrease caused the reduction of the p展开更多
The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted...The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted the PFJ (dPFJ) treated silages had significantly (p〈0.05) lower pH and ammonia-nitrogen content, while significantly higher lactic acid content compared with treatments. This study confirmed that the applying of the PFJ and the dPFJ improved fermentation quality of silage.展开更多
Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter...Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.展开更多
The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-prod...The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family展开更多
The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental re...The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.展开更多
Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to deligni...Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.展开更多
The fermentation of natural(NC)and pulped coffee(PC)was performed with a conventional method(platform)and under self-induced anaerobic fermentation(SIAF).Of the 12 samples analyzed during the fermentation process,the ...The fermentation of natural(NC)and pulped coffee(PC)was performed with a conventional method(platform)and under self-induced anaerobic fermentation(SIAF).Of the 12 samples analyzed during the fermentation process,the highest temperature was obtained by the SIAF method(30.5℃ for NC and 29.67℃ for PC)with 87 h of fermentation.Nonvolatile compounds(36 samples)were evaluated by high-performance liquid chromatography.Fermentation in the SIAF method contributed to the maximum amount of citric acid(2.534 mg/g)in pulped coffee and acetic acid(6.04 mg/g)and lactic acid(2.533 mg/g)in NC.Furan was the primary chemical class detected,followed by ketones and pyrazines.All coffees(12 samples)were evaluated five times and classified as specialty coffees(>80 points)following Specialty Coffee Association(SCA)protocols.The pulped coffee processed by the SIAF method showed a 2.83-point increase in the sensory score compared to the conventional method.Therefore,the SIAF method is accessible to producers,contributes to coffees with differentiated sensory profiles,and increases beverage quality.展开更多
[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl...[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.展开更多
An anaerobic contact reactor (ACR) systemcomprising a continuous flow stirred tank reactor (CSTR)with settler to decouple the hydraulic retention time(HRT) from solids retention time (SRT) was developedfor fermentativ...An anaerobic contact reactor (ACR) systemcomprising a continuous flow stirred tank reactor (CSTR)with settler to decouple the hydraulic retention time(HRT) from solids retention time (SRT) was developedfor fermentative hydrogen production from dilutedmolasses by mixed microbial cultures. The ACR wasoperated at various volumetric loading rates (VLRs) of20-44 kgCOD·m^(-3)·d^(-1) with constant HRT of 6 h undermesophilic conditions of 35°C. The SRTwas maintained atabout 46-50 h in the system. At the initial VLR of20 kgCOD·m^(-3)·d^(-1), the hydrogen production rate droppedfrom 22.6 to 1.58 L·d^(-1) as the hydrogen was consumed bythe hydrogentrophic methanogen. After increasing theVLR to 28 kgCOD·m^(-3)·d^(-1) and discharging the sludge for6 consecutive times, the hydrogentrophic methanogenswere eliminated, and the hydrogen content reached 36.4%.As the VLR was increased to 44 kgCOD·m^(-3)·d^(-1), thehydrogen production rate and hydrogen yield increased to42.1 L·d^(-1) and 1.40 mol H2·molglucose-consumed^(-1),respectively. The results showed that a stable ethanoltypefermentation that favored hydrogen production inthe reactor was thus established with the sludgeloading rate (SLR) of 2.0-2.5 kgCOD·kgMLVSS-1·d^(-1).It was found that the ethanol increased more than otherliquid fermentation products, and the ethanol/acetic acid(mol/mol) ratio increased from 1.27 to 2.45 when the VLRincreased from 28 to 44 kgCOD·m^(-3)·d^(-1), whereas thehydrogen composition decreased from 40.4% to 36.4%.The results suggested that the anaerobic contact reactorwas a promising bioprocess for fermentative hydrogenproduction.展开更多
The effects of nitrate on fermentative hydrogen production and soluble metabolites from mixed cultures were investigated by varying nitrate concentrations from 0 to 10 g N/L at 35℃ with an initial pH of 7.0.The resul...The effects of nitrate on fermentative hydrogen production and soluble metabolites from mixed cultures were investigated by varying nitrate concentrations from 0 to 10 g N/L at 35℃ with an initial pH of 7.0.The results showed that the substrate degradation rate,hydrogen production potential,hydrogen yield,and average hydrogen production rate initially increased with increasing nitrate concentrations from 0 to 0.1 g N/L,while they decreased with increasing nitrate concentrations from 0.1 to 10 g N/L.The maximum hydrogen production potential of 305.0 mL,maximum hydrogen yield of 313.1 mL/g glucose,and maximum average hydrogen production rate of 13.3 mL/h were obtained at a nitrate concentration of 0.1 g N/L.The soluble metabolites produced by the mixed cultures contained only ethanol and acetic acid(HAc)without propionic acid(HPr)and butyric acid(HBu).This study used the Modified Logistic model to describe the progress of cumulative hydrogen production in batch tests.A concise model was proposed to describe the effects of nitrate concentration on average hydrogen production rate.展开更多
基金SUT-OROG scholarshipthe Higher Education Promotion and National Research University Project of Thailand (NRU)the Office of the Higher Education Commission (FtR 06/2559) for funding support
文摘The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl
基金supported by the National Natural Science Foundation of China(Grant No.50208006)National 863 Plan of the Ministry of Science and Technology of China(Grant No.2002AA001036).
文摘PCR-single-strand conformation polymorphism (SSCP) and Southern blotting tech-niques were adopted to investigate microbial community dynamics in a sulfate-reducing bioreactor caused by decreasing influent alkalinity. Experimental results indicated that the sulfate-removal rate approached 87% in 25 d under the conditions of influent alkalinity of 4000 mg/L (as CaCO3) and sul-fate-loading rate of 4.8 g/(L·d), which indicated that the bioreactor started up successfully. The analy-sis of microbial community structure in this stage showed that Lactococcus sp., Anaerofilum sp. and Kluyvera sp. were dominant populations. It was found that when influent alkalinity reduced to 1000 mg/L, sulfate-removal rate decreased rapidly to 35% in 3 d. Then influent alkalinity was increased to 3000 mg/L, the sulfate-removal rate rose to 55%. Under these conditions, the populations of Dysgo-nomonas sp., Sporobacte sp., Obesumbacterium sp. and Clostridium sp. got to rich, which predomi-nated in the community together with Lactococcus sp., Anaerofilum sp. and Kluyvera sp. However, when the alkalinity was decreased to 1500 mg/L, the sulfate-removal rate rose to and kept stable at 70% and populations of Dysgonomonas sp., Sporobacter sp. and Obesumbacterium sp. died out, while some strains of Desulfovibrio sp. and Clostridium sp. increased in concentration. In order to determine the minimum alkalinity value that the system could tolerate, the influent alkalinity was de-creased from 1500 to 400 mg/L secondly. This resulted in the sulfate-removal rate, pH value and ef-fluent alkalinity dropping quickly. The amount of Petrotoga sp., Prevotella sp., Kluyvera sp. and Neisseria sp. reduced obviously. The result data from Southern blotting indicated that the amount of sulfate-reducing bacteria (SRBs) decreased with influent alkalinity dropping. Analysis of the microbial community structure and diversity showed that the SRBs populations were very abundant in the in-oculated activated sludge and the alkalinity decrease caused the reduction of the p
基金Supported by the Scientific Research of Anhui Educational Committee (KJ2010B053)
文摘The effects of Previously Fermented Juice (PFJ) on the fermentative quality and changes in chemical composition during fermentation of rice straw silage were investigated. The results showed that the PFJ and diluted the PFJ (dPFJ) treated silages had significantly (p〈0.05) lower pH and ammonia-nitrogen content, while significantly higher lactic acid content compared with treatments. This study confirmed that the applying of the PFJ and the dPFJ improved fermentation quality of silage.
文摘Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.
文摘The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family
基金Sponsored by the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(Grant No.2010DX06)the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)the Harbin Science and Technology Bureau(Grant No.2009RFXXS004)
文摘The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.
基金supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (Monbukagakusho Scholarship)MEXT-ARDA under the Asia Core Program (ACP)
文摘Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.
基金supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnol´ogico(CNPq),Fundaç˜ao de Amparo`a Pesquisa do Estado de Minas Gerais(FAPEMIG)Coordenaç˜ao de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)for financial support。
文摘The fermentation of natural(NC)and pulped coffee(PC)was performed with a conventional method(platform)and under self-induced anaerobic fermentation(SIAF).Of the 12 samples analyzed during the fermentation process,the highest temperature was obtained by the SIAF method(30.5℃ for NC and 29.67℃ for PC)with 87 h of fermentation.Nonvolatile compounds(36 samples)were evaluated by high-performance liquid chromatography.Fermentation in the SIAF method contributed to the maximum amount of citric acid(2.534 mg/g)in pulped coffee and acetic acid(6.04 mg/g)and lactic acid(2.533 mg/g)in NC.Furan was the primary chemical class detected,followed by ketones and pyrazines.All coffees(12 samples)were evaluated five times and classified as specialty coffees(>80 points)following Specialty Coffee Association(SCA)protocols.The pulped coffee processed by the SIAF method showed a 2.83-point increase in the sensory score compared to the conventional method.Therefore,the SIAF method is accessible to producers,contributes to coffees with differentiated sensory profiles,and increases beverage quality.
基金Supported by National Basic Research Program of China(2006CB708407 2009CB220005)+2 种基金National Natural Science Foun-dation of China (90610001 20871106)Program of 211 Projectfor Zhengzhou University from Ministry of Education~~
文摘[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.
基金This work was financially supported by the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2010DX06)National High Technology Research and Development Program of China(863 Program)(No.2006AA05Z109)Harbin Science and Technology Bureau(No.2009RFXXS004).
文摘An anaerobic contact reactor (ACR) systemcomprising a continuous flow stirred tank reactor (CSTR)with settler to decouple the hydraulic retention time(HRT) from solids retention time (SRT) was developedfor fermentative hydrogen production from dilutedmolasses by mixed microbial cultures. The ACR wasoperated at various volumetric loading rates (VLRs) of20-44 kgCOD·m^(-3)·d^(-1) with constant HRT of 6 h undermesophilic conditions of 35°C. The SRTwas maintained atabout 46-50 h in the system. At the initial VLR of20 kgCOD·m^(-3)·d^(-1), the hydrogen production rate droppedfrom 22.6 to 1.58 L·d^(-1) as the hydrogen was consumed bythe hydrogentrophic methanogen. After increasing theVLR to 28 kgCOD·m^(-3)·d^(-1) and discharging the sludge for6 consecutive times, the hydrogentrophic methanogenswere eliminated, and the hydrogen content reached 36.4%.As the VLR was increased to 44 kgCOD·m^(-3)·d^(-1), thehydrogen production rate and hydrogen yield increased to42.1 L·d^(-1) and 1.40 mol H2·molglucose-consumed^(-1),respectively. The results showed that a stable ethanoltypefermentation that favored hydrogen production inthe reactor was thus established with the sludgeloading rate (SLR) of 2.0-2.5 kgCOD·kgMLVSS-1·d^(-1).It was found that the ethanol increased more than otherliquid fermentation products, and the ethanol/acetic acid(mol/mol) ratio increased from 1.27 to 2.45 when the VLRincreased from 28 to 44 kgCOD·m^(-3)·d^(-1), whereas thehydrogen composition decreased from 40.4% to 36.4%.The results suggested that the anaerobic contact reactorwas a promising bioprocess for fermentative hydrogenproduction.
基金the National Natural Science Foundation of China(Grant No.50325824).
文摘The effects of nitrate on fermentative hydrogen production and soluble metabolites from mixed cultures were investigated by varying nitrate concentrations from 0 to 10 g N/L at 35℃ with an initial pH of 7.0.The results showed that the substrate degradation rate,hydrogen production potential,hydrogen yield,and average hydrogen production rate initially increased with increasing nitrate concentrations from 0 to 0.1 g N/L,while they decreased with increasing nitrate concentrations from 0.1 to 10 g N/L.The maximum hydrogen production potential of 305.0 mL,maximum hydrogen yield of 313.1 mL/g glucose,and maximum average hydrogen production rate of 13.3 mL/h were obtained at a nitrate concentration of 0.1 g N/L.The soluble metabolites produced by the mixed cultures contained only ethanol and acetic acid(HAc)without propionic acid(HPr)and butyric acid(HBu).This study used the Modified Logistic model to describe the progress of cumulative hydrogen production in batch tests.A concise model was proposed to describe the effects of nitrate concentration on average hydrogen production rate.