Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feed-forward network composed of Hodgkin-Huxley (HH) neurons with sparse connectivity. When white noise is aff...Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feed-forward network composed of Hodgkin-Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant Tsyn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of Tsyn, suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10614028)the National Key Basic Research Program of China (Grant No 2007CB814806)Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No NCET-08-0269)
文摘Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feed-forward network composed of Hodgkin-Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant Tsyn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of Tsyn, suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks.