In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,prop...In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.展开更多
In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characteri...In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characterize the uncertainty caused by various factors. A modified Markov model is proposed to obtain the state probabilities of components at any given moment and subsequently the mass function is used to represent the precise belief degree of state probabilities. Based on the primary studies of universal generating function(UGF)method, a belief UGF(BUGF) method is utilized to analyze the reliability and the uncertainty of excavator rectifier feedback system. This paper provides an available method to evaluate the reliability of multi-state systems(MSSs) with interval state performances and state probabilities, and also avoid the interval expansion problem.展开更多
基金supported by the National Natural Science Foundation of China(NSFC) under Grant(No. 61461136001)
文摘In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.
基金the National High Technology Research and Development Program(863)of China(No.2012AA062001)
文摘In view of the complexity and uncertainty of system, both the state performances and state probabilities of multi-state components can be expressed by interval numbers. The belief function theory is used to characterize the uncertainty caused by various factors. A modified Markov model is proposed to obtain the state probabilities of components at any given moment and subsequently the mass function is used to represent the precise belief degree of state probabilities. Based on the primary studies of universal generating function(UGF)method, a belief UGF(BUGF) method is utilized to analyze the reliability and the uncertainty of excavator rectifier feedback system. This paper provides an available method to evaluate the reliability of multi-state systems(MSSs) with interval state performances and state probabilities, and also avoid the interval expansion problem.