期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO的小样本特征选择优化算法研究
被引量:
3
1
作者
杨鹤标
刘芳
胡惊涛
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2021年第1期76-81,97,共7页
针对神经网络进行小样本数据训练时出现文本表征精确度低及特征过拟合,易造成权值全局最优和局部最优的不平衡现象,提出一种基于粒子群的双向长短期记忆网络(Bi-PSO)算法,利用Bi-LSTM对序列数据中长短期距离依赖信息的能力,对文本特征...
针对神经网络进行小样本数据训练时出现文本表征精确度低及特征过拟合,易造成权值全局最优和局部最优的不平衡现象,提出一种基于粒子群的双向长短期记忆网络(Bi-PSO)算法,利用Bi-LSTM对序列数据中长短期距离依赖信息的能力,对文本特征矩阵进行最小残差化处理得到降维矩阵,并通过粒子群算法获取降维矩阵中特征向量的全局最优和局部最优权重,最终进行权重类间、类内距离的迭代计算获得最优特征子集.仿真实验表明:Bi-PSO算法在文本特征拟合精度上得到了提升,算法精确度比Bi-LSTM平均提高了2.225%,在处理样本数目为200~600小样本数据集时拟合效果良好.
展开更多
关键词
小样本学习
神经网络
粒子群
不平衡现象
特征选择
下载PDF
职称材料
题名
基于PSO的小样本特征选择优化算法研究
被引量:
3
1
作者
杨鹤标
刘芳
胡惊涛
机构
江苏大学计算机科学与通信工程学院
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2021年第1期76-81,97,共7页
基金
国家自然科学基金资助项目(61872167)
江苏省社会发展基金资助项目(BE2017700)。
文摘
针对神经网络进行小样本数据训练时出现文本表征精确度低及特征过拟合,易造成权值全局最优和局部最优的不平衡现象,提出一种基于粒子群的双向长短期记忆网络(Bi-PSO)算法,利用Bi-LSTM对序列数据中长短期距离依赖信息的能力,对文本特征矩阵进行最小残差化处理得到降维矩阵,并通过粒子群算法获取降维矩阵中特征向量的全局最优和局部最优权重,最终进行权重类间、类内距离的迭代计算获得最优特征子集.仿真实验表明:Bi-PSO算法在文本特征拟合精度上得到了提升,算法精确度比Bi-LSTM平均提高了2.225%,在处理样本数目为200~600小样本数据集时拟合效果良好.
关键词
小样本学习
神经网络
粒子群
不平衡现象
特征选择
Keywords
one-shot
learning
neural
network
particle
swarm
feature
unbalance
feature
selection
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSO的小样本特征选择优化算法研究
杨鹤标
刘芳
胡惊涛
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2021
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部