多标记数据有很多的冗余特征和数据,为了解决多标记数据中冗余和无关特征,提高多标记学习算法的泛化能力。提出一个基于模拟退火的卷积式特征选择方法——SAML(simulated annealing based feature selection for multi-label data),已...多标记数据有很多的冗余特征和数据,为了解决多标记数据中冗余和无关特征,提高多标记学习算法的泛化能力。提出一个基于模拟退火的卷积式特征选择方法——SAML(simulated annealing based feature selection for multi-label data),已有的算法只是使用了遗传算法来进行优化,新算法采用模拟退火来寻找最优子集,其效果在已有的工作中表现出比前者遗传算法更好的效果。在用于公开评测的Yahoo网页分类数据集上的实验结果表明,SAML算法的性能优于新近提出的一些流行的多标记特征选择方法。展开更多
文摘多标记数据有很多的冗余特征和数据,为了解决多标记数据中冗余和无关特征,提高多标记学习算法的泛化能力。提出一个基于模拟退火的卷积式特征选择方法——SAML(simulated annealing based feature selection for multi-label data),已有的算法只是使用了遗传算法来进行优化,新算法采用模拟退火来寻找最优子集,其效果在已有的工作中表现出比前者遗传算法更好的效果。在用于公开评测的Yahoo网页分类数据集上的实验结果表明,SAML算法的性能优于新近提出的一些流行的多标记特征选择方法。