针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行...针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。展开更多
While a popular representation of 3D data,point clouds may contain noise and need filtering before use.Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distributio...While a popular representation of 3D data,point clouds may contain noise and need filtering before use.Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distributions in the filtered output.To address this problem,this paper introduces a point cloud filtering method that considers both point distribution and feature preservation during filtering.The key idea is to incorporate a repulsion term with a data term in energy minimization.The repulsion term is responsible for the point distribution,while the data term aims to approximate the noisy surfaces while preserving geometric features.This method is capable of handling models with fine-scale features and sharp features.Extensive experiments show that our method quickly yields good results with relatively uniform point distribution.展开更多
Color pencil drawing is well-loved due to its rich expressiveness.This paper proposes an approach for generating feature-preserving color pencil drawings from photographs.To mimic the tonal style of color pencil drawi...Color pencil drawing is well-loved due to its rich expressiveness.This paper proposes an approach for generating feature-preserving color pencil drawings from photographs.To mimic the tonal style of color pencil drawings,which are much lighter and have relatively lower saturation than photographs,we devise a lightness enhancement mapping and a saturation reduction mapping.The lightness mapping is a monotonically decreasing derivative function,which not only increases lightness but also preserves input photograph features.Color saturation is usually related to lightness,so we suppress the saturation dependent on lightness to yield a harmonious tone.Finally,two extremum operators are provided to generate a foreground-aware outline map in which the colors of the generated contours and the foreground object are consistent.Comprehensive experiments show that color pencil drawings generated by our method surpass existing methods in tone capture and feature preservation.展开更多
We propose a novel Laplacian-based algorithm that simplifies triangle surface meshes and can provide different preservation ratios of geometric features.Our efficient and fast algorithm uses a 3D mesh model as input a...We propose a novel Laplacian-based algorithm that simplifies triangle surface meshes and can provide different preservation ratios of geometric features.Our efficient and fast algorithm uses a 3D mesh model as input and initially detects geometric features by using a Laplacian-based shape descriptor(L-descriptor).The algorithm further performs an optimized clustering approach that combines a Laplacian operator with K-means clustering algorithm to perform vertex classification.Moreover,we introduce a Laplacian weighted cost function based on L-descriptor to perform feature weighting and error statistics comparison,which are further used to change the deletion order of the model elements and preserve the saliency features.Our algorithm can provide different preservation ratios of geometric features and may be extended to handle arbitrary mesh topologies.Our experiments on a variety of 3D surface meshes demonstrate the advantages of our algorithm in terms of improving accuracy and applicability,and preserving saliency geometric features.展开更多
文摘针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。
文摘While a popular representation of 3D data,point clouds may contain noise and need filtering before use.Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distributions in the filtered output.To address this problem,this paper introduces a point cloud filtering method that considers both point distribution and feature preservation during filtering.The key idea is to incorporate a repulsion term with a data term in energy minimization.The repulsion term is responsible for the point distribution,while the data term aims to approximate the noisy surfaces while preserving geometric features.This method is capable of handling models with fine-scale features and sharp features.Extensive experiments show that our method quickly yields good results with relatively uniform point distribution.
基金This work was supported in parts by GD Natural Science Foundation(2021A1515012301,2022A1515011425)the Key Research and Development Project of Guangzhou(202206010091,SL2022B03J01235).
文摘Color pencil drawing is well-loved due to its rich expressiveness.This paper proposes an approach for generating feature-preserving color pencil drawings from photographs.To mimic the tonal style of color pencil drawings,which are much lighter and have relatively lower saturation than photographs,we devise a lightness enhancement mapping and a saturation reduction mapping.The lightness mapping is a monotonically decreasing derivative function,which not only increases lightness but also preserves input photograph features.Color saturation is usually related to lightness,so we suppress the saturation dependent on lightness to yield a harmonious tone.Finally,two extremum operators are provided to generate a foreground-aware outline map in which the colors of the generated contours and the foreground object are consistent.Comprehensive experiments show that color pencil drawings generated by our method surpass existing methods in tone capture and feature preservation.
基金This work has been financially supported by the National High Technology Research and Development Program of China(863 Program)(www.nsfc.gov.cn,No.2015AA016403)the National Natural Science Foundation of China(www.nsfc.gov.cn,No.61602223).
文摘We propose a novel Laplacian-based algorithm that simplifies triangle surface meshes and can provide different preservation ratios of geometric features.Our efficient and fast algorithm uses a 3D mesh model as input and initially detects geometric features by using a Laplacian-based shape descriptor(L-descriptor).The algorithm further performs an optimized clustering approach that combines a Laplacian operator with K-means clustering algorithm to perform vertex classification.Moreover,we introduce a Laplacian weighted cost function based on L-descriptor to perform feature weighting and error statistics comparison,which are further used to change the deletion order of the model elements and preserve the saliency features.Our algorithm can provide different preservation ratios of geometric features and may be extended to handle arbitrary mesh topologies.Our experiments on a variety of 3D surface meshes demonstrate the advantages of our algorithm in terms of improving accuracy and applicability,and preserving saliency geometric features.