Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
经典的SURF(speeded up robust features)算法在匹配的过程中,对一幅图像上每一个选定的特征点都要与另一幅图像上所有的特征点一一进行匹配,耗时较高,并且由于误匹配导致匹配的准确率下降.基于此,结合特征点的分类思想对SURF算法进行改...经典的SURF(speeded up robust features)算法在匹配的过程中,对一幅图像上每一个选定的特征点都要与另一幅图像上所有的特征点一一进行匹配,耗时较高,并且由于误匹配导致匹配的准确率下降.基于此,结合特征点的分类思想对SURF算法进行改进.根据特征点邻域内像素之间的差值形成一个4维的特征向量,与SURF的特征描述子相结合形成68维的特征向量,以达到提高匹配速度和准确率的目的.在哥伦比亚大学Coil-100图像库中对改进SURF算法进行试验.结果表明,相对于经典SURF算法,改进SURF算法在速度上有很大的提高.展开更多
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
文摘经典的SURF(speeded up robust features)算法在匹配的过程中,对一幅图像上每一个选定的特征点都要与另一幅图像上所有的特征点一一进行匹配,耗时较高,并且由于误匹配导致匹配的准确率下降.基于此,结合特征点的分类思想对SURF算法进行改进.根据特征点邻域内像素之间的差值形成一个4维的特征向量,与SURF的特征描述子相结合形成68维的特征向量,以达到提高匹配速度和准确率的目的.在哥伦比亚大学Coil-100图像库中对改进SURF算法进行试验.结果表明,相对于经典SURF算法,改进SURF算法在速度上有很大的提高.