期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
基于多特征图金字塔融合深度网络的遥感图像语义分割 被引量:20
1
作者 赵斐 张文凯 +2 位作者 闫志远 于泓峰 刁文辉 《电子与信息学报》 EI CSCD 北大核心 2019年第10期2525-2531,共7页
在遥感图像语义分割中,利用多元数据(如高程信息)进行辅助是一个研究重点。现有的基于多元数据的分割方法通常直接将多元数据作为模型的多特征输入,未能充分利用多元数据的多层次特征,此外,遥感图像中目标尺寸大小不一,对于一些中小型目... 在遥感图像语义分割中,利用多元数据(如高程信息)进行辅助是一个研究重点。现有的基于多元数据的分割方法通常直接将多元数据作为模型的多特征输入,未能充分利用多元数据的多层次特征,此外,遥感图像中目标尺寸大小不一,对于一些中小型目标,如车辆、房屋等,难以做到精细化分割。针对以上问题,提出一种多特征图金字塔融合深度网络(MFPNet),该模型利用光学遥感图像和高程数据作为输入,提取图像的多层次特征,然后针对不同层次的特征,分别引入金字塔池化结构,提取图像的多尺度特征,最后,设计了一种多层次、多尺度特征融合策略,综合利用多元数据的特征信息,实现遥感图像的精细化分割。基于Vaihingen数据集设计了相应的对比实验,实验结果证明了所提方法的有效性。 展开更多
关键词 语义分割 深度卷积神经网络 特征图融合 金字塔池化
下载PDF
基于特征金字塔和多任务学习的绝缘子图像检测 被引量:15
2
作者 黄玲 赵锴 +3 位作者 李继东 冯浩 王彦卿 马必焕 《电测与仪表》 北大核心 2021年第4期37-43,共7页
作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用。针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法... 作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用。针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法。通过融合高、低维度特征信息来构筑特征金字塔,避免目标位置等细节信息的丢失,实现复杂背景中绝缘子的高效检测;引入多任务学习算法,进一步提升模型的泛化能力,提升绝缘子检测精度。利用无人机航拍所得的绝缘子实际图像进行实验,结果表明所提方法可将绝缘子检测精度提升至95.3%,具备较高的工程应用价值。 展开更多
关键词 绝缘子检测 图像分割 特征融合 特征金字塔 多任务学习
下载PDF
采用卷积核金字塔和空洞卷积的单阶段目标检测 被引量:11
3
作者 刘涛 汪西莉 《中国图象图形学报》 CSCD 北大核心 2020年第1期102-112,共11页
目的在基于深度学习的目标检测模型中,浅层特征图包含更多细节但缺乏语义信息,深层特征图则相反,为了利用不同深度特征图的优势,并在此基础上解决检测目标的多尺度问题,本文提出基于卷积核金字塔和空洞卷积的单阶段目标检测模型。方法... 目的在基于深度学习的目标检测模型中,浅层特征图包含更多细节但缺乏语义信息,深层特征图则相反,为了利用不同深度特征图的优势,并在此基础上解决检测目标的多尺度问题,本文提出基于卷积核金字塔和空洞卷积的单阶段目标检测模型。方法所提模型采用多种方式融合特征信息,先使用逐像素相加方式融合多层不同大小的特征图信息,然后在通道维度拼接不同阶段的特征图,形成具有丰富语义信息和细节信息的信息融合特征层作为模型的预测层。模型在锚框机制中引入卷积核金字塔结构,以解决检测目标的多尺度问题,采用空洞卷积减少大尺寸卷积核增加的参数量,合理地降低锚框数量。结果实验结果表明,在PASCAL VOC2007测试数据集上,所提检测框架在300×300像素的输入上检测精度达到79.3%mAP(mean average precision),比SSD(single shot multibox detector)高1.8%,比DSSD(deconvolutional single shot detector)高0.9%。在UCAS-AOD遥感数据测试集上,所提模型的检测精度分别比SSD和DSSD高2.8%和1.9%。在检测速度上,所提模型在Titan X GPU上达到21帧/s,速度超过DSSD。结论本文模型提出在两个阶段融合特征信息并改进锚框机制,不仅具有较快的检测速度和较高的精度,而且较好地解决了小目标以及重叠目标难以被检出的问题。 展开更多
关键词 单阶段目标检测 特征融合 卷积核金字塔 锚框 空洞卷积
原文传递
基于深度学习与多尺度特征融合的烤烟烟叶分级方法 被引量:8
4
作者 鲁梦瑶 周强 +3 位作者 姜舒文 王聪 陈栋 陈天恩 《中国农机化学报》 北大核心 2022年第1期158-166,共9页
为实现烤烟等级的快速准确识别,降低人工分级中主观因素对分级结果的影响,提高烟叶分级的准确性和一致性,提出一种基于烤烟RGB图像和深度学习的多尺度特征融合的烟叶图像等级分类方法,采用ResNet50提取烟叶图像特征,并引入基于注意力机... 为实现烤烟等级的快速准确识别,降低人工分级中主观因素对分级结果的影响,提高烟叶分级的准确性和一致性,提出一种基于烤烟RGB图像和深度学习的多尺度特征融合的烟叶图像等级分类方法,采用ResNet50提取烟叶图像特征,并引入基于注意力机制的SE模块(压缩激发模块),增强不同通道特征的重要程度;同时,采用FPN(特征金字塔网络)对提取的由浅及深不同层级的烟叶特征进行融合,以实现烟叶多尺度特征的表达。采集皖南地区6068个烤烟的正面和背面图像用于建模和分析。结果表明,提出的烟叶分级方法的分级正确率比经典CNN(卷积神经网络)高出5.21%,分级模型在新批次7个等级烟叶上的分级正确率为80.14%,相邻等级的分级正确率为91.50%。因此,采用RGB图像结合深度学习技术可实现烤烟烟叶等级的良好识别,可为烤烟烟叶收购等级评价提供一种新方法。 展开更多
关键词 烟叶分级 深度学习 图像分类 特征融合 特征金字塔网络 SE模块
下载PDF
基于空洞卷积金字塔的目标检测算法 被引量:9
5
作者 候少麒 梁杰 +2 位作者 殷康宁 刘学婷 殷光强 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第6期843-851,共9页
作为目标检测领域最突出的问题,遮挡和多尺度严重影响了算法的召回率和准确率。针对以上问题,该文从感受野入手,提出了一种基于空洞卷积金字塔网络(ACFPN)的目标检测算法。首先,将不同尺寸的空洞卷积层引入特征金字塔网络(FPN)中,构建... 作为目标检测领域最突出的问题,遮挡和多尺度严重影响了算法的召回率和准确率。针对以上问题,该文从感受野入手,提出了一种基于空洞卷积金字塔网络(ACFPN)的目标检测算法。首先,将不同尺寸的空洞卷积层引入特征金字塔网络(FPN)中,构建混合感受野模块(HRFM),旨在控制参数量的条件下,通过增大感受野获取更多全局特征信息,解决目标的遮挡问题;其次,改进FPN的结构,设计低层嵌入特征金字塔模块(LEFPM),将浅层特征细节信息和高层特征语义信息相融合,提高特征图的丰富度和表征能力,增强模型的尺度适应性;特别地,针对漏检问题,引入FCOS算法中的无锚框(AF)机制,减少了候选框的冗余,进一步提高了定位精度。最后在公开数据集上进行测试,该算法在检测精度上大幅提升。 展开更多
关键词 空洞卷积 特征融合 特征金字塔 目标检测 感受野
下载PDF
基于多尺度特征选择与融合的目标检测方法 被引量:4
6
作者 陈乔松 陈鹏昌 +4 位作者 李佩 张亚玲 邓欣 孙开伟 王进 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第2期227-234,共8页
针对多尺度目标检测中特征图特征混淆和特征丰富程度不足的问题,提出一种基于多尺度特征选择与融合的目标检测算法。设计了一个特征选择模块来分离出不相关的特征,并结合特征金字塔网络形成特征选择网络结构,降低特征图中不同尺度目标... 针对多尺度目标检测中特征图特征混淆和特征丰富程度不足的问题,提出一种基于多尺度特征选择与融合的目标检测算法。设计了一个特征选择模块来分离出不相关的特征,并结合特征金字塔网络形成特征选择网络结构,降低特征图中不同尺度目标的局部特征对当前尺度特征的干扰;提出一种浅层特征融合方法,将浅层特征逐级融合到较深层级特征中,解决特征图的特征不够丰富问题。结合特征选择架构和浅层特征融合架构,在PASCAL-VOC2007数据集上进行测试,结果mAP达到了80.1%。相较于基础的单阶段目标检测(single shot detection,SSD),所提算法的网络性能可提高2.9%,且在一些小目标和遮挡目标的检测效果上有明显的提升。通过对比和消融实验,证明了所提方法的有效性。 展开更多
关键词 目标检测 特征提取 特征选择 特征融合 特征金字塔
下载PDF
改进的SSD算法及其在目标检测中的应用 被引量:8
7
作者 张震 李孟洲 +1 位作者 李浩方 马军强 《计算机应用与软件》 北大核心 2021年第9期226-231,共6页
针对以R-CNN展开的目标检测速度慢,传统的SSD算法在检测小目标精度不高的问题,提出一种改进的SSD算法。该算法提出轻量级网络融合+层级特征融合构建新的金字塔特征层来解决SSD对小目标识别率低的问题。将卷积前后的特征进行轻量级网络融... 针对以R-CNN展开的目标检测速度慢,传统的SSD算法在检测小目标精度不高的问题,提出一种改进的SSD算法。该算法提出轻量级网络融合+层级特征融合构建新的金字塔特征层来解决SSD对小目标识别率低的问题。将卷积前后的特征进行轻量级网络融合,形成新的金字塔特征层,对形成的特征层进行层级特征融合,形成最终的金字塔特征层,在最终的金字塔特征层上执行目标检测任务。在PASCAL-VOC2007的训练集和验证集上训练该算法,并在VOC2007测试集上测试该算法对小目标检测的有效性,检测速度达到81.5帧/s,与传统SSD算法相比,mAP提升了0.078。 展开更多
关键词 SSD算法 特征融合 金字塔特征层 目标检测
下载PDF
融合FHOG和LBP特征的尺度自适应相关滤波跟踪算法 被引量:8
8
作者 刘晓悦 王云明 马伟宁 《激光与光电子学进展》 CSCD 北大核心 2020年第4期322-329,共8页
针对核相关滤波算法中单一特征不能很好地适应跟踪过程中出现的复杂场景,以及算法无法解决目标尺度变化的问题,提出一种多特征融合的尺度自适应相关滤波跟踪算法。首先,在相关滤波算法的框架下,按照特征响应图的可信度来对快速方向梯度... 针对核相关滤波算法中单一特征不能很好地适应跟踪过程中出现的复杂场景,以及算法无法解决目标尺度变化的问题,提出一种多特征融合的尺度自适应相关滤波跟踪算法。首先,在相关滤波算法的框架下,按照特征响应图的可信度来对快速方向梯度直方图(FHOG)特征和局部二值模式(LBP)特征进行自适应加权融合,实现对目标的定位;其次,在尺度估计环节,利用尺度金字塔来估计目标的尺度大小,使算法对尺度发生变化的目标有很好的适应能力;最后,在OTB-50数据集上进行测试,将本文算法与其他5种跟踪方法进行对比,其精确率和成功率均有所提高,且具有较好的鲁棒性和稳定的跟踪性能。 展开更多
关键词 机器视觉 相关滤波算法 特征融合 尺度自适应 尺度金字塔
原文传递
基于特征融合的小样本目标检测 被引量:3
9
作者 华杰 刘学亮 赵烨 《计算机科学》 CSCD 北大核心 2023年第2期209-213,共5页
小样本目标检测旨在通过少量的样本学习来训练目标检测模型,现有的小样本目标检测方法大多基于经典的目标检测算法。在二阶段的检测方法中,由于新类别样本数量少,产生了许多无关的边界框,导致候选区域的准确率较低。为了解决这个问题,... 小样本目标检测旨在通过少量的样本学习来训练目标检测模型,现有的小样本目标检测方法大多基于经典的目标检测算法。在二阶段的检测方法中,由于新类别样本数量少,产生了许多无关的边界框,导致候选区域的准确率较低。为了解决这个问题,提出了一种基于特征融合的小样本目标检测算法FF-FSOD。该方法采用特征融合的方法进行数据增强,对新类别样本进行补充,扩大样本的覆盖范围,同时引入FPN网络进行多尺度特征提取,再对RPN网络进行改进,引入支持集图像分支,计算支持集图像特征与查询集图像特征的深度互相关性,得到注意力特征图,进而获得更精确的候选框。所提模型的有效性在MS COCO和FSOD数据集上得到了验证,实验结果表明,该方法获得了更精准的候选框,进而提升了检测精度。 展开更多
关键词 小样本学习 目标检测 深度学习 特征融合 特征金字塔
下载PDF
基于局部和全局特征融合的二阶段人脸图像修复算法研究
10
作者 徐克 《现代电子技术》 北大核心 2024年第9期40-46,共7页
针对大面积不规则破损的人脸图像修复过程中出现的伪影和不连贯问题,提出一种基于特征融合和多尺度注意力机制的二阶段人脸图像修复算法。在粗修复网络增加全局和局部特征分支来处理编码器的输出。其中,局部特征分支使用多尺度空洞卷积... 针对大面积不规则破损的人脸图像修复过程中出现的伪影和不连贯问题,提出一种基于特征融合和多尺度注意力机制的二阶段人脸图像修复算法。在粗修复网络增加全局和局部特征分支来处理编码器的输出。其中,局部特征分支使用多尺度空洞卷积和门控残差连接来聚合上下文信息,并与全局特征分支的输出进行正交融合,提高局部特征与全局特征的相关性,减少特征冗余。在精修复网络增加平均和最大金字塔池化模块,其中,平均池化用于捕捉整体统计信息,最大池化用于提取空间上显著的特征并保留关键信息,并利用通道⁃空间注意力机制进行图像特征结构调整和纹理生成。最后,构建了一个包括多尺度结构相似性损失的复合函数对网络进行训练。实验结果表明,所提算法在主观和客观评价指标上均优于现有算法。 展开更多
关键词 全局特征 局部特征 正交融合 金字塔池化 CBAM 多尺度特征融合 人脸图像修复
下载PDF
交叉特征融合和RASPP驱动的场景分割方法 被引量:1
11
作者 朱新杰 熊风光 +2 位作者 谢帅康 宋宁栋 李文清 《计算机系统应用》 2024年第1期76-86,共11页
本文针对场景中目标多样性和尺度不统一等现象造成的边缘分割错误、特征不连续问题,提出了一种交叉特征融合和RASPP驱动的场景分割方法.该方法以交叉特征融合的方式合并编码器输出的多尺度特征,在融合高层语义信息时使用复合卷积注意力... 本文针对场景中目标多样性和尺度不统一等现象造成的边缘分割错误、特征不连续问题,提出了一种交叉特征融合和RASPP驱动的场景分割方法.该方法以交叉特征融合的方式合并编码器输出的多尺度特征,在融合高层语义信息时使用复合卷积注意力模块进行处理,避免上采样操作造成的特征信息丢失以及引入噪声的影响,细化目标边缘分割效果.同时提出了深度可分离残差卷积,在此基础上设计并实现了结合残差的金字塔池化模块——RASPP,对交叉融合后的特征进行处理,获得不同尺度的上下文信息,增强特征语义表达.最后,将RASPP模块处理后的特征进行合并,提升分割效果.在Cityscapes和CamVid数据集上的实验结果表明,本文提出方法相比现有方法具有更好的表现,并且对场景中的目标边缘有更好的分割效果. 展开更多
关键词 语义分割 交叉特征融合 金字塔池化 注意力机制 深度可分离卷积
下载PDF
基于彩色-深度图像和深度学习的场景语义分割网络 被引量:7
12
作者 代具亭 汤心溢 +1 位作者 刘鹏 邵保泰 《科学技术与工程》 北大核心 2018年第20期286-291,共6页
近年来,深度卷积神经网络应用于图像语义分割领域并取得了巨大成功。提出了一个基于RGB-D(彩色-深度)图像的场景语义分割网络;该网络通过融合多级RGB网络特征图和深度图网络特征图,有效提高了卷积神经网络语义分割的准确率。同时,利用... 近年来,深度卷积神经网络应用于图像语义分割领域并取得了巨大成功。提出了一个基于RGB-D(彩色-深度)图像的场景语义分割网络;该网络通过融合多级RGB网络特征图和深度图网络特征图,有效提高了卷积神经网络语义分割的准确率。同时,利用带孔的卷积核设计了具有捷径恒等连接的空间金字塔结构来提取高层次特征的多尺度信息。在SUN RGB-D数据集上的测试结果显示,与其他state-of-the-art的语义分割网络结构相比,所提出的场景语义分割网络性能突出。 展开更多
关键词 RGB-D 卷积神经网络 语义分割 特征融合 空间金字塔
下载PDF
基于双重注意力和多尺度特征融合的场景文本检测算法
13
作者 强观臣 杨茜 +2 位作者 张丽真 熊炜 李利荣 《光电子.激光》 CAS CSCD 北大核心 2024年第6期570-579,共10页
本文提出了一种场景文本检测方法,用于应对复杂自然场景中文本检测的挑战。该方法采用了双重注意力和多尺度特征融合的策略,通过双重注意力融合机制增强了文本特征通道之间的关联性,提升了整体检测性能。在考虑到深层特征图上下采样可... 本文提出了一种场景文本检测方法,用于应对复杂自然场景中文本检测的挑战。该方法采用了双重注意力和多尺度特征融合的策略,通过双重注意力融合机制增强了文本特征通道之间的关联性,提升了整体检测性能。在考虑到深层特征图上下采样可能引发的语义信息损失的基础上,提出了空洞卷积多尺度特征融合金字塔(dilated convolution multi-scale feature fusion pyramid structure,MFPN),它采用双融合机制来增强语义特征,有助于加强语义特征,克服尺度变化的影响。针对不同密度信息融合引发的语义冲突和多尺度特征表达受限问题,创新性地引入了多尺度特征融合模块(multi-scale feature fusion module,MFFM)。此外,针对容易被冲突信息掩盖的小文本问题,引入了特征细化模块(feature refinement module,FRM)。实验表明,本文的方法对复杂场景中文本检测有效,其F值在CTW1500、ICDAR2015和Total-Text 3个数据集上分别达到了85.6%、87.1%和86.3%。 展开更多
关键词 文本检测 注意力融合 多尺度 特征融合金字塔
原文传递
基于全局上下文注意力特征融合金字塔网络的遥感目标检测
14
作者 孙文赟 车嘉航 金忠 《计算机系统应用》 2024年第9期114-122,共9页
遥感目标检测往往具有图像尺度变化大、目标微小、密集排列和宽高比过大的特性,给高精度定向目标检测造成困难.本文提出了一种全局上下文注意力特征融合金字塔网络.首先,本文设计了一种三重注意力特征融合模块,它能够更好地融合语义和... 遥感目标检测往往具有图像尺度变化大、目标微小、密集排列和宽高比过大的特性,给高精度定向目标检测造成困难.本文提出了一种全局上下文注意力特征融合金字塔网络.首先,本文设计了一种三重注意力特征融合模块,它能够更好地融合语义和尺度不一致的特征.然后引入层内调节方法改进并提出了一个全局上下文信息增强网络,对含有高级语义信息的深层特征的进行细化,提升表征能力.在此基础上,以全局集中调节的思想设计了全局上下文注意力特征融合金字塔网络,利用注意力调制特征自上而下地调节浅层多尺度特征.在几个公开数据集中进行了广泛实验,实验结果的高精度评价指标均优于目前先进的模型. 展开更多
关键词 遥感图像 定向目标检测 注意力特征融合 特征金字塔网络
下载PDF
多任务金字塔重叠匹配的行人重识别方法 被引量:6
15
作者 徐龙壮 彭力 朱凤增 《计算机工程》 CAS CSCD 北大核心 2021年第1期239-245,254,共8页
针对基于局部特征的行人重识别方法在行人错位和姿态变化时识别精度较低的问题,提出一种采用多任务金字塔重叠匹配特征的重识别方法。在训练阶段,使用改进的ResNes50作为主干网络提取特征图,将其切分组合形成金字塔重叠匹配网络,获得全... 针对基于局部特征的行人重识别方法在行人错位和姿态变化时识别精度较低的问题,提出一种采用多任务金字塔重叠匹配特征的重识别方法。在训练阶段,使用改进的ResNes50作为主干网络提取特征图,将其切分组合形成金字塔重叠匹配网络,获得全局特征向量并经全局平均池化得到包含多尺度特征的多个局部特征向量,联合使用Softmax损失函数、三元组损失函数和中心损失函数学习全局和局部特征向量,并利用特征归一化层减少损失函数学习目标冲突的影响。在推理阶段,将多个局部特征向量融合为一个新特征向量进行相似性匹配,以获取更好的匹配结果。在Market1501、DukeMTMC-reID和CUHK03数据集上的实验结果表明,与PSE、MultiScale等主流重识别方法相比,该方法重识别精度更高,提取的特征具有较好的鲁棒性和识别度。 展开更多
关键词 深度学习 行人重识别 特征融合 金字塔重叠匹配 多任务联合学习
下载PDF
用于交通图像识别的改进尺度依赖池化模型 被引量:6
16
作者 徐喆 冯长华 《计算机应用》 CSCD 北大核心 2018年第3期671-676,共6页
针对交通标志在自然场景中所占的比例较小、提取的特征量不足、识别准确率低的问题,提出改进的尺度依赖池化(SDP)模型用于小尺度交通图像的识别。首先,基于神经网络深卷积层具有较好的轮廓信息与类别特征,在SDP模型只提取浅卷积层特征... 针对交通标志在自然场景中所占的比例较小、提取的特征量不足、识别准确率低的问题,提出改进的尺度依赖池化(SDP)模型用于小尺度交通图像的识别。首先,基于神经网络深卷积层具有较好的轮廓信息与类别特征,在SDP模型只提取浅卷积层特征信息的基础上,使用深卷积层特征补足型SDP(SD-SDP)映射输出,丰富特征信息;其次,因SDP算法中的单层空间金字塔池化损失边缘信息,使用多尺度滑窗池化(MSP)将特征池化到固定维度,增强小目标的边缘信息;最后,将改进的尺度依赖池化模型应用于交通标志的识别。实验结果表明,与原SDP算法比较,提取特征量增加,小尺度交通图像的识别准确率较好地提升。 展开更多
关键词 卷积神经网络 交通标志识别 尺度依赖池化 特征融合 空间金字塔池化
下载PDF
基于改进YOLOv4的行人鞋部检测算法 被引量:5
17
作者 杨智雄 唐云祁 +1 位作者 张家钧 耿鹏志 《激光与光电子学进展》 CSCD 北大核心 2022年第8期111-120,共10页
结合现场鞋印和周边监控视频锁定犯罪嫌疑人是公安机关刑事侦查破案的一种重要技战法,然而该技战法自动化程度低、耗时耗力,限制了应用范围。针对这一问题,本文提出一种基于YOLOv4算法的目标检测方法,可实现对监控视频下行人鞋部的自动... 结合现场鞋印和周边监控视频锁定犯罪嫌疑人是公安机关刑事侦查破案的一种重要技战法,然而该技战法自动化程度低、耗时耗力,限制了应用范围。针对这一问题,本文提出一种基于YOLOv4算法的目标检测方法,可实现对监控视频下行人鞋部的自动检测。根据行人鞋部区域的特点,首先使用Kmeans聚类算法获得先验框尺度,并确定其数量;然后根据构建的数据集选取合适的检测层以强化对鞋部特征的学习;最后,通过多尺度特征融合,将调整后的空间金字塔池化结构迁移到剪枝后的网络内,增强模型的学习能力。结果表明,提出的YOLOv4_shoe算法训练权重仅为39.56 MB,参数量约为原模型的六分之一,mAP值达到了97.93%,比原YOLOv4模型提升了2.07%。 展开更多
关键词 图像处理 鞋部检测 YOLOv4 特征融合 空间金字塔池化 视频监控
原文传递
基于增强特征融合网络的安全帽佩戴检测 被引量:1
18
作者 崔卓栋 陈玮 尹钟 《电子科技》 2023年第4期44-51,共8页
佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合... 佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合的角度对其进行了改进。该模型通过使用特征补充的方式减少了特征融合过程中的信息损失,并利用改进的特征金字塔及自适应空间融合模块提升了融合的效率,最终达到提升性能的目的。实验表明,文中改进的模型在安全帽佩戴数据集上的精确率达到83.03%,相较于未改进的模型有所提升,且模型大小没有明显增加。该模型在PASCAL VOC 2007上的精确率则达到了82.76%。 展开更多
关键词 安全帽佩戴检测 特征融合 特征金字塔 目标检测 EfficientDet 空间融合 深度学习 卷积神经网络
下载PDF
基于功能保持的特征金字塔目标检测网络 被引量:5
19
作者 徐成琪 洪学海 《模式识别与人工智能》 EI CSCD 北大核心 2020年第6期507-517,共11页
针对特征金字塔网络在多尺度与小目标检测上的问题,提出基于功能保持的特征金字塔目标检测网络.首先在主网络中选择特征图构建特征金字塔,针对不同尺度的特征图,通过功能保持融合模块自上而下地进行低损失的特征融合.功能保持融合模块... 针对特征金字塔网络在多尺度与小目标检测上的问题,提出基于功能保持的特征金字塔目标检测网络.首先在主网络中选择特征图构建特征金字塔,针对不同尺度的特征图,通过功能保持融合模块自上而下地进行低损失的特征融合.功能保持融合模块有效保留高层的强语义信息,增强底层特征图对小目标的表示能力.再利用网络两个阶段的特征描述目标,提升检测精度.最后,充分利用上下文信息进一步增强对多尺度目标的判别能力.在PASCAL VOC公共数据集上的实验表明,文中网络检测效果较优.同时,通过检测效果图可看出,文中网络在目标遮挡、模糊等情况下的检测效果也较优. 展开更多
关键词 功能保持 特征融合 二阶段检测 特征金字塔网络
下载PDF
一种注意力机制特征融合的小目标检测模型 被引量:1
20
作者 陈海燕 甄霞军 赵涛涛 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第3期60-66,共7页
针对图像中小目标的特征难以有效提取,从而对小目标的检测不利的问题,提出了一种通道-空间注意力机制特征融合的小目标检测模型.该模型以Faster R-CNN作为基础检测模型,首先设计了一种基于通道-空间注意力机制的特征融合方法,用于降低... 针对图像中小目标的特征难以有效提取,从而对小目标的检测不利的问题,提出了一种通道-空间注意力机制特征融合的小目标检测模型.该模型以Faster R-CNN作为基础检测模型,首先设计了一种基于通道-空间注意力机制的特征融合方法,用于降低特征融合过程中引起的混叠效应;然后设计了一种跳跃残差连接模块用于降低特征融合过程中高层特征信息的丢失;最后基于ResNet101深层特征提取能力强的特点,使用其提取特征,将提取的特征采用通道-空间注意力机制特征融合方法融合生成特征金字塔网络,并将生成的特征金字塔网络作为Faster R-CNN的主干网络.在NWPU VHR-10数据集上对小目标检测的实验结果表明:本文模型的平均检测精度为82.5%,高于DSSD(55.4%)、FSSD(77.3%)、TDFSSD(76.8%)、Faster R-CNN(44.2%)和FPN(68.9%)的平均检测精度. 展开更多
关键词 小目标检测 特征融合 注意力机制 混叠效应 特征金字塔网络
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部