针对滚动轴承复合故障难以分离的问题,课题组提出了一种自适应多尺度形态滤波分离方法。首先,利用具有提取周期性特征的多尺度形态滤波器和峭度特征能量积(kurtosis feature energy product, KF)提取出一种主要的故障特征分量;然后,利...针对滚动轴承复合故障难以分离的问题,课题组提出了一种自适应多尺度形态滤波分离方法。首先,利用具有提取周期性特征的多尺度形态滤波器和峭度特征能量积(kurtosis feature energy product, KF)提取出一种主要的故障特征分量;然后,利用奇异值分解(singular value decomposition, SVD)降噪方法对提取的故障特征进行降噪处理,增强故障特征;最后,对去噪信号进行迭代筛选分离,得到多个故障特征模式分量。通过仿真信号与异步牵引电机实际故障信号对比实验,结果表明:该方法能够分离复合故障特征,并有效提取噪声干扰下的故障特征信息。该方法滤波效果强于传统方法,具有较好的工程应用价值。展开更多
文摘针对滚动轴承复合故障难以分离的问题,课题组提出了一种自适应多尺度形态滤波分离方法。首先,利用具有提取周期性特征的多尺度形态滤波器和峭度特征能量积(kurtosis feature energy product, KF)提取出一种主要的故障特征分量;然后,利用奇异值分解(singular value decomposition, SVD)降噪方法对提取的故障特征进行降噪处理,增强故障特征;最后,对去噪信号进行迭代筛选分离,得到多个故障特征模式分量。通过仿真信号与异步牵引电机实际故障信号对比实验,结果表明:该方法能够分离复合故障特征,并有效提取噪声干扰下的故障特征信息。该方法滤波效果强于传统方法,具有较好的工程应用价值。