In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement err...In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km.展开更多
已有的多标记特征选择方法主要根据特征与标记之间的依赖度以及特征与特征之间的冗余度确定每个特征的重要度,然后根据重要度进行特征选择,常常忽略标记关系对特征选择的影响。针对上述问题,引入邻域互信息设计了基于标记补充的多标记...已有的多标记特征选择方法主要根据特征与标记之间的依赖度以及特征与特征之间的冗余度确定每个特征的重要度,然后根据重要度进行特征选择,常常忽略标记关系对特征选择的影响。针对上述问题,引入邻域互信息设计了基于标记补充的多标记特征选择算法(Multi-label feature selection algorithm based on label complementarity,MLLC),该算法将依赖度、冗余度以及标记关系作为特征重要度的评价要素,然后基于这3个要素重新设计特征重要度评估函数,使得选取的特征能够获得更佳的分类性能。最后,在6个多标记数据集上验证了MLLC算法的有效性和鲁棒性。展开更多
文摘In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km.
文摘已有的多标记特征选择方法主要根据特征与标记之间的依赖度以及特征与特征之间的冗余度确定每个特征的重要度,然后根据重要度进行特征选择,常常忽略标记关系对特征选择的影响。针对上述问题,引入邻域互信息设计了基于标记补充的多标记特征选择算法(Multi-label feature selection algorithm based on label complementarity,MLLC),该算法将依赖度、冗余度以及标记关系作为特征重要度的评价要素,然后基于这3个要素重新设计特征重要度评估函数,使得选取的特征能够获得更佳的分类性能。最后,在6个多标记数据集上验证了MLLC算法的有效性和鲁棒性。