In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant...In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness.展开更多
This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special d...This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example.展开更多
This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator fault...This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.展开更多
基金supported by the Funds for Creative Research Groups of China(No.60821063)National 973 Program of China(No.2009CB320604)+2 种基金the Funds of National Science of China(No.60974043)the 111 Project(No.B08015)the Fundamental Research Funds for the Central Universities(No.N090604001,N090604002)
文摘In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness.
基金supported by the National Basic Research Program of China (973 Program) (No.2009CB320604)the Key Program of National Natural Science Foundation of China (No.60534010)+5 种基金National Natural Science Foundation of China (No.60674021)Program for New Century Excellent Talents in Universities (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60821063)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the Funds of Doctoral Program of Ministry of Education, China(No.20060145019)the 111 Project (No.B08015)
文摘This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example.
基金supported by the National Natural Science Foundation of China(61973331,61973257)the National Key Research and Development Plan Programs of China(2018YFB0106101).
文摘This paper studies a finite-time adaptive fractionalorder fault-tolerant control(FTC)scheme for the slave position tracking of the teleoperating cyber physical system(TCPS)with external disturbances and actuator faults.Based on the fractional Lyapunov stability theory and the finite-time stability theory,a fractional-order nonsingular fast terminal sliding mode(FONFTSM)control law is proposed to promote the tracking and fault tolerance performance of the considered system.Meanwhile,the adaptive fractional-order update laws are designed to cope with the unknown upper bounds of the unknown actuator faults and external disturbances.Furthermore,the finite-time stability of the closed-loop system is proved.Finally,comparison simulation results are also provided to show the validity and the advantages of the proposed techniques.