K-Ar dating of synkinematic illite is increasingly recognized as a central method to constrain the timing of shallow crustal faulting.Methods of efficient sample preparation and quantitative identification of illite p...K-Ar dating of synkinematic illite is increasingly recognized as a central method to constrain the timing of shallow crustal faulting.Methods of efficient sample preparation and quantitative identification of illite polytypes are critical to acquiring K-Ar isotope data for authigenic clays.In this respect,we compared the commonly used clay size separation method through centrifugation with vacuum filtration technology,showing that the former is prone to extract fractions with finer particle sizes under similar conditions,thus improving the error in the authigenic end-member age.Additionally,we demonstrated that the side-packed mounting method for X-ray diffraction analysis can significantly enhance the randomness in powder samples,thus improving the quantification accuracy compared with the front-packed and back-packed methods.The validity of our quantification method was confirmed by comparing Profex■modeling patterns with a suite of synthetic mixtures of known compositions,yielding an average analytical error of 3%.Dating results of these artificial mixtures and the reference materials indicated that a large range in percentages of detrital illite and a sufficient amount of age data will produce reliable results for ages of both extrapolated end-members.However,if the range is limited,the extrapolated age close to those of datasets is still reliable.展开更多
The role of authigenic clay growth in clay gouge is increasingly recognized as a key to understanding the mechanics of berittle faulting and fault zone processes,including creep and seismogenesis,and providing new ins...The role of authigenic clay growth in clay gouge is increasingly recognized as a key to understanding the mechanics of berittle faulting and fault zone processes,including creep and seismogenesis,and providing new insights into the ongoing debate about the frictional strength of brittle fault(Haines and van der Pluijm,2012).However,neither the conditions nor the processes which展开更多
Stick slip and stable creep are two principal modes of fault motion. The formeris considered to be closely related to earthquake generation. The determination of themode of motion during geologic time along a fault ou...Stick slip and stable creep are two principal modes of fault motion. The formeris considered to be closely related to earthquake generation. The determination of themode of motion during geologic time along a fault outcropped on earth surface is ofcritical importance to the assessment of the behaviour of fault activity.展开更多
In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Unde...In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity.展开更多
In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar w...In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar weak structures.The failure may occur in two modes:a sliding failure on the weak plane or an intrinsic failure of the rock mass.The rock matrix is expected to behave elastically or fail in a brittle manner,being represented by a non-associated Mohr-Coulomb behavior,while the sliding failure is represented by the evaluation of the Coulomb criterion on an explicitly defined plane.Failure may furthermore affect the hydraulic properties of the rock mass:the shearing of the weakness plane may create a transmissive fluid pathway.Verification of the mechanical submodel is conducted by comparison with an analytical solution,while the coupled hydro-mechanical behavior is validated with field data and will be applied within a model and code validation initiative.The work presented here aims at documenting the progress in code development,while accurate match of the field data with the numerical results is current work in progress.展开更多
基金funded by the National Natural Science Foundation of China(Nos.42072240 and 41602218)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(No.GML2019ZD0201)the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Chinese Academy of Geological Sciences(Nos.J1901-30 and J1908)。
文摘K-Ar dating of synkinematic illite is increasingly recognized as a central method to constrain the timing of shallow crustal faulting.Methods of efficient sample preparation and quantitative identification of illite polytypes are critical to acquiring K-Ar isotope data for authigenic clays.In this respect,we compared the commonly used clay size separation method through centrifugation with vacuum filtration technology,showing that the former is prone to extract fractions with finer particle sizes under similar conditions,thus improving the error in the authigenic end-member age.Additionally,we demonstrated that the side-packed mounting method for X-ray diffraction analysis can significantly enhance the randomness in powder samples,thus improving the quantification accuracy compared with the front-packed and back-packed methods.The validity of our quantification method was confirmed by comparing Profex■modeling patterns with a suite of synthetic mixtures of known compositions,yielding an average analytical error of 3%.Dating results of these artificial mixtures and the reference materials indicated that a large range in percentages of detrital illite and a sufficient amount of age data will produce reliable results for ages of both extrapolated end-members.However,if the range is limited,the extrapolated age close to those of datasets is still reliable.
基金financed by the National Youth Sciences Foundation of China (No. 41502044)
文摘The role of authigenic clay growth in clay gouge is increasingly recognized as a key to understanding the mechanics of berittle faulting and fault zone processes,including creep and seismogenesis,and providing new insights into the ongoing debate about the frictional strength of brittle fault(Haines and van der Pluijm,2012).However,neither the conditions nor the processes which
文摘Stick slip and stable creep are two principal modes of fault motion. The formeris considered to be closely related to earthquake generation. The determination of themode of motion during geologic time along a fault outcropped on earth surface is ofcritical importance to the assessment of the behaviour of fault activity.
基金conducted with funding provided by the California Energy Commission under the contract PIR-16-027 for Research on Risk Management Framework for Underground Natural Gas infrastructure in California。
文摘In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity.
基金the DECOVALEX-2019 funding organisations of Andra,BGR/UFZ,CNSC,US DOE,ENSI,JAEA,IRSN,KAERI,NWMO,RWM,SURAO,SSM and Taipower for their financial and technical support of the work described in this paper。
文摘In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar weak structures.The failure may occur in two modes:a sliding failure on the weak plane or an intrinsic failure of the rock mass.The rock matrix is expected to behave elastically or fail in a brittle manner,being represented by a non-associated Mohr-Coulomb behavior,while the sliding failure is represented by the evaluation of the Coulomb criterion on an explicitly defined plane.Failure may furthermore affect the hydraulic properties of the rock mass:the shearing of the weakness plane may create a transmissive fluid pathway.Verification of the mechanical submodel is conducted by comparison with an analytical solution,while the coupled hydro-mechanical behavior is validated with field data and will be applied within a model and code validation initiative.The work presented here aims at documenting the progress in code development,while accurate match of the field data with the numerical results is current work in progress.