期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
走滑断层的识别标志及其石油地质意义 被引量:82
1
作者 夏义平 刘万辉 +1 位作者 徐礼贵 郑良合 《中国石油勘探》 CAS 2007年第1期17-23,48,共8页
按照断层规模和石油地质控制作用的差别,走滑断层分为板块级、盆地级、区带级、圈闭级和显微级五大类。断面陡立、发育花状构造、平面形迹丰富、空间常见海豚效应、断层两侧地层厚度突变等现象是识别走滑断层的主要标志。综合利用地面... 按照断层规模和石油地质控制作用的差别,走滑断层分为板块级、盆地级、区带级、圈闭级和显微级五大类。断面陡立、发育花状构造、平面形迹丰富、空间常见海豚效应、断层两侧地层厚度突变等现象是识别走滑断层的主要标志。综合利用地面地质、航磁、重力、卫星照片、三维地震等资料,可以更加有效地解释和评价走滑断层。走滑断层对油气勘探的重要意义主要体现在控制沉积盆地的构造格局和沉积体系,从而影响油气系统、形成有效的聚油气圈闭、充当油气运移通道和改善储层的储集物性等,有时也有破坏圈闭的保存条件和沟通油田底水影响开发效率的负面影响。 展开更多
关键词 走滑断层 分类 识别标志 综合解释 石油地质作用
下载PDF
基于优化卷积神经网络的电缆早期故障分类识别 被引量:60
2
作者 汪颖 孙建风 +2 位作者 肖先勇 卢宏 杨晓梅 《电力系统保护与控制》 EI CSCD 北大核心 2020年第7期10-18,共9页
准确识别电缆早期故障是及时消除故障隐患的必要前提。提出基于卷积神经网络的电缆早期故障分类识别的方法,可从含恒定阻抗故障、励磁涌流、电容投切扰动的过电流信号中准确识别电缆早期故障。通过小波变换提取过电流信号特征,构建卷积... 准确识别电缆早期故障是及时消除故障隐患的必要前提。提出基于卷积神经网络的电缆早期故障分类识别的方法,可从含恒定阻抗故障、励磁涌流、电容投切扰动的过电流信号中准确识别电缆早期故障。通过小波变换提取过电流信号特征,构建卷积神经网络,进行训练调整网络参数形成输入特征与类别编码之间的映射关系。为解决训练过拟合和学习效率的问题,通过修正损失函数和采用自适应学习率的方法优化卷积神经网络。仿真结果表明,所提方法能对过电流信号进行有效分类,准确识别电缆早期故障,具有较高的工程应用价值。 展开更多
关键词 电缆早期故障 卷积神经网络 深度学习 分类识别 修正损失函数
下载PDF
发动机转子系统早期故障智能诊断 被引量:7
3
作者 王仲生 姜洪开 徐一艳 《航空学报》 EI CAS CSCD 北大核心 2009年第2期242-246,共5页
在对飞机发动机转子系统早期故障特点进行分析的基础上,针对其故障诊断中存在的故障样本不足和早期微弱故障不易识别的问题,提出将随机共振、小波包分析与支持向量机相结合的发动机转子系统早期故障诊断与智能自愈监控方法。该方法首先... 在对飞机发动机转子系统早期故障特点进行分析的基础上,针对其故障诊断中存在的故障样本不足和早期微弱故障不易识别的问题,提出将随机共振、小波包分析与支持向量机相结合的发动机转子系统早期故障诊断与智能自愈监控方法。该方法首先利用随机共振原理对早期微弱故障信号进行特征细化,使故障特征放大;然后利用小波包多分辨率分析特性进行故障特征提取;再将提取的特征向量输入由支持向量机构造的分类器中进行故障识别,并利用智能自愈方法对故障进行监控。对智能诊断系统结构、故障特征提取方法、多故障分类器构造、故障自愈监控等进行了分析和研究。结果表明,该方法在故障样本不足情况下,能有效识别发动机转子系统的早期故障,且算法简单、故障分类识别效果好,并能对故障进行自愈监控。 展开更多
关键词 飞机发动机 转子 早期故障特征提取 故障分类识别 故障智能自愈监控
原文传递
机械传动电机轴承故障信号诊断仿真研究 被引量:8
4
作者 路照坭 朱希安 《自动化仪表》 CAS 2019年第9期46-51,共6页
传统经验模态分解(EMD)存在模态混叠,难以充分提取故障特征,原始支持向量机(SVM)、相关向量机(RVM)诊断方法核函数存在选取不灵活、结构复杂导致识别效率低的问题,提出了一种结合变分模态分解(VMD)样本熵和混合布谷鸟改进M-RVM的机械传... 传统经验模态分解(EMD)存在模态混叠,难以充分提取故障特征,原始支持向量机(SVM)、相关向量机(RVM)诊断方法核函数存在选取不灵活、结构复杂导致识别效率低的问题,提出了一种结合变分模态分解(VMD)样本熵和混合布谷鸟改进M-RVM的机械传动电机轴承故障诊断新方法。首先,对故障信号进行VMD分解得到多个子序列;然后,筛选其中的有效分量提取样本熵组成故障特征向量;最后,将特征向量输入基于混合布谷鸟算法优化的M-RVM故障诊断模型,达到对电机运行状态准确识别的目的。仿真结果表明,所提方法实现了电机轴承故障状态的准确诊断。与传统分析诊断方法相比,该方法轴承故障识别诊断性能得到提高,对实际工程应用具有重大意义。 展开更多
关键词 轴承 故障信号诊断 变分模态分解 特征提取 样本熵 改进混合布谷鸟算法 多分类相关向量机 故障分类识别
下载PDF
综合多域特征及融合算法的配电网单相接地故障类型识别 被引量:4
5
作者 吴岩 关石磊 +1 位作者 孟晓丽 吴燕 《高电压技术》 EI CAS CSCD 北大核心 2023年第5期2059-2067,共9页
区分配电网中发生的单相接地故障类型,能够有针对性地制定故障检修策略,提升故障处置效率。配电自动化设备作为配电网故障快速辨识与处理的重要载体,对故障分类的原理及效果差异性较大,准确率无法满足电力系统工作需求,为此提出一种基... 区分配电网中发生的单相接地故障类型,能够有针对性地制定故障检修策略,提升故障处置效率。配电自动化设备作为配电网故障快速辨识与处理的重要载体,对故障分类的原理及效果差异性较大,准确率无法满足电力系统工作需求,为此提出一种基于分类回归树与多核残差网络(classfication and regression tree and multi-core ResNet, CART-MRN)的树状结构故障类型识别方法。首先,建立树状故障分类结构,利用Fourier变换、经验模态分解(empirical mode decompsition, EMD)分解等方法提取故障点电压电流的多域故障特征;其次,结合特征分析与信息增益建立适应不同小电流接地系统的融合算法模型,并引入粒子群算法优化网络超参数;最后,通过现场录波数据验证与对比实验,证明该方法能快速、有效地完成单相接地故障分类识别,且更具有适应性。 展开更多
关键词 单相接地故障 故障分类识别 多域特征 决策树 多核残差网络 配电网
下载PDF
基于CatBoost的常用电器负载电弧故障识别方法 被引量:3
6
作者 金翠 刘洋 +3 位作者 李琦 赵墨林 莫显耀 王影 《电测与仪表》 北大核心 2023年第7期193-200,共8页
电气火灾造成的危害日益受到人们重视,其成因中占比最大的是电弧故障。电弧识别是一种重要的电弧故障预防性技术,可以监测电气设备中的电弧事故,以便及时采取应对措施,是智能用电的重要组成部分。文中就电弧故障识别方法展开研究,搭建... 电气火灾造成的危害日益受到人们重视,其成因中占比最大的是电弧故障。电弧识别是一种重要的电弧故障预防性技术,可以监测电气设备中的电弧事故,以便及时采取应对措施,是智能用电的重要组成部分。文中就电弧故障识别方法展开研究,搭建了实验平台,分析了不同家用电器负载组合的电弧特征,进行了特征提取;提出了一种基于CatBoost分类模型的电弧识别方法,使用CatBoost模型对提取到的特征进行训练,以实现电弧故障的快速识别;经过测试及验证,与现有的SVM、Random Forest等常用识别分类方法相比,提出的基于CatBoost分类模型的电弧识别方法具有更高的准确率和召回率,能够有效提高电弧事故的识别精度。 展开更多
关键词 电弧故障 CatBoost分类模型 电弧识别 召回率
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
7
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
松南十屋断陷深部地层层序的识别与划分 被引量:4
8
作者 赵勇刚 《重庆科技学院学报(自然科学版)》 CAS 2008年第2期10-12,共3页
根据层序地层学理论,综合应用测井、露头、岩芯及地震剖面等资料建立十屋断陷的层序地层格架。根据识别出的层序界面标志,十屋断陷深部断陷期可划出3个二级层序:初始裂陷期层序组、快速裂陷期层序组和裂陷萎缩期层序组。在裂陷期层序中... 根据层序地层学理论,综合应用测井、露头、岩芯及地震剖面等资料建立十屋断陷的层序地层格架。根据识别出的层序界面标志,十屋断陷深部断陷期可划出3个二级层序:初始裂陷期层序组、快速裂陷期层序组和裂陷萎缩期层序组。在裂陷期层序中可以划出5个三级层序,自下而上为:火石岭组层序、沙河子组层序、营一层序、营二层序和登楼库组层序。 展开更多
关键词 十屋断陷 深部地层 层序识别
下载PDF
小样本下基于原型网络的轴向柱塞泵故障诊断模型 被引量:2
9
作者 范佳祺 兰媛 +3 位作者 黄家海 熊晓燕 李国彦 李利娜 《机电工程》 CAS 北大核心 2023年第4期584-591,共8页
在实际工程应用中,有限的故障样本数量及噪声都影响轴向柱塞泵故障诊断的效果,所以,如何提高模型在小样本、噪声条件下轴向柱塞泵故障诊断的性能是一个亟待解决的问题。在样本数量有限、噪声条件下,采用基于深度学习的故障诊断方法会出... 在实际工程应用中,有限的故障样本数量及噪声都影响轴向柱塞泵故障诊断的效果,所以,如何提高模型在小样本、噪声条件下轴向柱塞泵故障诊断的性能是一个亟待解决的问题。在样本数量有限、噪声条件下,采用基于深度学习的故障诊断方法会出现过拟合、诊断准确率下降的问题,为此,提出了一种小样本条件下基于原型网络的轴向柱塞泵故障诊断模型(方法)。首先,搭建了轴向柱塞泵故障诊断模型,并等量随机抽取了每个故障的样本以构建多个任务,模型使用一维卷积神经网络作为主干,每个任务中包含当前模型、支持集、查询集;然后,利用模型将样本映射到特征空间,在特征空间中,模型使用支持集的同类样本构建了原型点,并逐个将查询集样本与多个原型点进行了距离度量,实现了轴向柱塞泵不同故障的分类;最后,为了验证基于原型网络的轴向柱塞泵故障诊断模型的有效性,采集了轴向柱塞泵不同元件发生故障时产生的振动信号,并使用上述诊断模型对此进行了故障识别实验;为了验证该诊断模型的优越性,将其与基于卷积神经网络等的模型进行了性能对比。实验结果表明:在样本有限的条件下,采用基于原型网络的轴向柱塞泵故障诊断模型的准确率达到85%以上;同时,在噪声条件下,采用基于原型网络的模型的准确率也能达到85%以上。研究结果表明:基于原型网络的模型的诊断性能优于卷积神经网络模型与传统方法。 展开更多
关键词 容积泵 深度学习 有限样本数量 抗噪性 故障分类识别 诊断准确率 结果可视化
下载PDF
基于模糊粗糙集的大型汽轮机组设备故障识别方法
10
作者 莫子孟 尹立平 《能源科技》 2024年第3期44-48,共5页
针对大型汽轮机组设备故障种类多,提出基于模糊粗糙集的大型汽轮机组设备故障识别方法。首先,模糊化处理大型汽轮机组设备故障信息,将复杂的故障信息转化为简单的模糊编码后,使用故障类型-征兆特征决策表生成方法构建特征决策表,表中各... 针对大型汽轮机组设备故障种类多,提出基于模糊粗糙集的大型汽轮机组设备故障识别方法。首先,模糊化处理大型汽轮机组设备故障信息,将复杂的故障信息转化为简单的模糊编码后,使用故障类型-征兆特征决策表生成方法构建特征决策表,表中各行代表故障类型,各列代表故障征兆特征;将决策表数据输入基于改进可拓神经网络聚类的故障分类模型中,决策表的历史数据作为训练数据,当下机组设备运行状态数据作为测试数据,通过判断当下设备运行状态是否与某故障类型-征兆特征决策表的数据匹配,完成设备故障识别。实验中,此方法可有效识别16种汽轮机组设备故障。 展开更多
关键词 模糊粗糙集 大型汽轮机组 设备故障 决策表 可拓神经网络聚类 故障分类识别
下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
11
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
下载PDF
ANN based directional relaying scheme for protection of Korba-Bhilai transmission line of Chhattisgarh state 被引量:4
12
作者 Anamika Yadav Yajnaseni Dash V.Ashok 《Protection and Control of Modern Power Systems》 2016年第1期128-144,共17页
As it is crucial to protect the transmission line from inevitable faults consequences,intelligent scheme must be employed for immediate fault detection and classification.The application of Artificial Neural Network(A... As it is crucial to protect the transmission line from inevitable faults consequences,intelligent scheme must be employed for immediate fault detection and classification.The application of Artificial Neural Network(ANN)to detect the fault,identify it’s section,and classify the fault on transmission lines with improved zone reach setting is presented in this article.The fundamental voltage and current magnitudes obtained through Discrete Fourier Transform(DFT)are specified as the inputs to the ANN.The relay is placed at section-2 which is the prime section to be protected.The ANN was trained and tested using diverse fault datasets;obtained from the simulation of different fault scenarios like different types of fault at varying fault inception angles,fault locations and fault resistances in a 400 kV,216 km power transmission network of CSEB between Korba-Bhilai of Chhattisgarh state using MATLAB.The simulation outcomes illustrated that the entire shunt faults including forward and reverse fault,it’s section and phase can be accurately identified within a half cycle time.The advantage of this scheme is to provide a major protection up to 99.5%of total line length using single end data and furthermore backup protection to the forward and reverse line sections.This routine protection system is properly discriminatory,rapid,robust,enormously reliable and incredibly responsive to isolate targeted fault. 展开更多
关键词 Artificial neural network fault classification fault detection fault direction estimation Section identification
原文传递
基于深度学习的采煤机截割部齿轮故障预测 被引量:3
13
作者 任春美 《机电工程》 CAS 北大核心 2022年第8期1061-1070,共10页
采煤机截割部齿轮发生故障会降低采煤机的生产工作效率,并带来生产安全隐患,针对这一问题,以MG1000/2500 WD型采煤机作为研究对象,对其截割部的齿轮故障进行了成因机理研究、仿真分析和实验研究。首先,分析了采煤机的总体结构,对采煤机... 采煤机截割部齿轮发生故障会降低采煤机的生产工作效率,并带来生产安全隐患,针对这一问题,以MG1000/2500 WD型采煤机作为研究对象,对其截割部的齿轮故障进行了成因机理研究、仿真分析和实验研究。首先,分析了采煤机的总体结构,对采煤机截割部齿轮故障的常见成因与机理进行了分析;其次,归纳了卷积神经网络(CNN)的卷积层、池化层和全连接层的表达公式,基于深度卷积神经网络(D-CNN)构建了截割部齿轮故障模型,并且研究了模型的算法流程;最后,通过选取训练的数据集,对模型进行了训练,对截割部齿轮故障进行了预测和分类,并结合性能评价指标对不同模型的实验结果进行了对比。研究结果表明:采用基于深度学习方法的预测模型可对采煤机截割部齿轮故障进行有效预测,齿轮故障识别率约为98.71%;在同等情况下,D-CNN模型对齿轮正常状态和故障状态分类精准率达到98.78%、召回率达到98.88%;相比于其他模型,该模型对齿轮故障具有更高的识别率,具备较高的故障预测与分类性能。 展开更多
关键词 煤矿机械 齿轮传动 故障预测模型 故障分类 深度卷积神经网络 故障识别率
下载PDF
Power Grid Fault Diagnosis Based on Deep Pyramid Convolutional Neural Network
14
作者 Xu Zhang Huiting Zhang +4 位作者 Dongying Zhang Yixian Wang Ruiting Ding Yuchuan Zheng Yongxu Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期2188-2203,共16页
Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Consi... Existing power grid fault diagnosis methods relyon manual experience to design diagnosis models, lack theability to extract fault knowledge, and are difficult to adaptto complex and changeable engineering sites. Considering thissituation, this paper proposes a power grid fault diagnosismethod based on a deep pyramid convolutional neural networkfor the alarm information set. This approach uses the deepfeature extraction ability of the network to extract fault featureknowledge from alarm information texts and achieve end-to-endfault classification and fault device identification. First, a deeppyramid convolutional neural network model for extracting theoverall characteristics of fault events is constructed to identifyfault types. Second, a deep pyramidal convolutional neuralnetwork model for alarm information text is constructed, thetext description characteristics associated with alarm informationtexts are extracted, the key information corresponding to faultsin the alarm information set is identified, and suspicious faultydevices are selected. Then, a fault device identification strategythat integrates fault-type and time sequence priorities is proposedto identify faulty devices. Finally, the actual fault cases and thefault cases generated by the simulation are studied, and theresults verify the effectiveness and practicability of the methodpresented in this paper. 展开更多
关键词 Alarm information deep pyramid convolutional neural network fault classification fault device identification feature extraction key information
原文传递
Research on Early Fault Self-Recovery Monitoring of Aero-Engine Rotor System
15
作者 Z.S. WANG S.W. MA 《Engineering(科研)》 2010年第1期60-64,共5页
In order to increase robustness of the AERS (Aero-engine Rotor System) and to solve the problem of lacking fault samples in fault diagnosis and the difficulty in identifying early weak fault, we proposed a new method ... In order to increase robustness of the AERS (Aero-engine Rotor System) and to solve the problem of lacking fault samples in fault diagnosis and the difficulty in identifying early weak fault, we proposed a new method that it not only can identify the early fault of AERS but also it can do self-recovery monitoring of fault. Our method is based on the analysis of the early fault features on AERS, and it combined the SVM (Support Vector Machine) with the stochastic resonance theory and the wavelet packet decomposition and fault self-recovery. First, we zoom the early fault feature signals by using the stochastic resonance theory. Second, we extract the feature vectors of early fault using the multi-resolution analysis of the wavelet packet. Third, we input the feature vectors to a fault classifier, which can be used to identify the early fault of AERS and carry out self-recovery monitoring of fault. In this paper, features of early fault on AERS, the zoom of early fault characteristics, the extraction method of early fault characteristics, the construction of multi-fault classifier and way of fault self-recovery monitoring are studied. Results show that our method can effectively identify the early fault of AERS, especially for identifying of fault with small samples, and it can carry on self-recovery monitoring of fault. 展开更多
关键词 AERS EARLY fault Support VECTOR Machine classification identification of fault SELF-RECOVERY Monitoring of fault
下载PDF
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断 被引量:2
16
作者 庄敏 李革 +1 位作者 范智军 孔德成 《机电工程》 CAS 北大核心 2022年第11期1535-1543,共9页
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的... 针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。 展开更多
关键词 特征提取 特征降维优化 故障分类识别 混合精细复合多尺度波动散布熵 拉普拉斯分数 蝙蝠算法优化支持向量机
下载PDF
基于广义形态差值滤波与极限学习机的滚动轴承故障诊断方法研究 被引量:2
17
作者 徐存知 熊新 《化工自动化及仪表》 CAS 2019年第1期54-57,共4页
由于工业设备工作环境恶劣、工况复杂,设备所采集的振动信号含噪声较多,难以准确提取设备运行状态的特征。因此,提出一种广义形态差值滤波和极限学习机相结合的滚动轴承故障诊断方法。实验结果表明:经广义形态差值滤波后的振动信号特征... 由于工业设备工作环境恶劣、工况复杂,设备所采集的振动信号含噪声较多,难以准确提取设备运行状态的特征。因此,提出一种广义形态差值滤波和极限学习机相结合的滚动轴承故障诊断方法。实验结果表明:经广义形态差值滤波后的振动信号特征更易区分,与BP神经网络相比,极限学习机具有更高的分类精度。 展开更多
关键词 滚动轴承 故障诊断 广义形态差值滤波 极限学习机 降噪 特征指标 故障分类模型 运行状态辨识
下载PDF
基于小波包分析和相关向量机的电路故障诊断 被引量:1
18
作者 路永华 彭会萍 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期981-986,共6页
针对模拟电路故障变化的复杂性,提出一种小波包分析和相关向量机的电路故障诊断模型,首先采集模拟电路不同故障状态下的输出信号,将输出信号进行小波包分解,提取分解信号的归一化能量特征,然后将特征向量输入相关向量机中进行训练,建立... 针对模拟电路故障变化的复杂性,提出一种小波包分析和相关向量机的电路故障诊断模型,首先采集模拟电路不同故障状态下的输出信号,将输出信号进行小波包分解,提取分解信号的归一化能量特征,然后将特征向量输入相关向量机中进行训练,建立模拟电路故障诊断模型,实现不同的故障状态分类识别;最后通过仿真实例对模型性能进行测试.测试结果表明,相对于其他模拟电路故障诊断模型,该模型不但提高了模拟电路故障诊断的正确率,而且减少了故障诊断时间. 展开更多
关键词 模拟电路故障 小波包分析 相关向量机 分类识别
下载PDF
基于神经网络和高阶统计量的滚动轴承故障分类
19
作者 张园 李力 《轴承》 北大核心 2006年第4期25-30,共6页
提出一种基于高阶统计量特征和BP神经网络相结合的滚动轴承故障分类方法。以滚动轴承的高阶统计量(双谱、三阶累积量)以及一些常见的无量纲指标作为轴承故障特征输入,以BP神经网络作为分类器,成功地对滚动轴承4种不同的故障进行了分类... 提出一种基于高阶统计量特征和BP神经网络相结合的滚动轴承故障分类方法。以滚动轴承的高阶统计量(双谱、三阶累积量)以及一些常见的无量纲指标作为轴承故障特征输入,以BP神经网络作为分类器,成功地对滚动轴承4种不同的故障进行了分类。对比RBF神经网络,尽管BP神经网络的训练速度不快,但分类效果良好。研究表明,高阶统计量和BP神经网络相结合的滚动轴承分类方法是有效的。 展开更多
关键词 滚动轴承 故障 诊断 BP神经网络 高阶统计量 分类识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部