In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated...In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α(αp) phase surrounded by a secondary α colony(αs) in the α phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/d N values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low K values(<13.8). The differences that are observed between the crack propagation behaviors(in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αscolony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αpand α clusters have a large size.However, in the columnar grain region, small and randomly distributed αplamellae generate a zigzagshaped propagation path with a reduction in the da/d N value. Additionally, the change in the size of the αp lamellae in the equiaxed grains(heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.展开更多
基金supported by the Beijing Municipal Science & Technology Commission (Z171100000817002)the National Postdoctoral Program for Innovative Talents of China (BX201600010)the China Postdoctoral Science Foundation (2017M620014)
文摘In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing(LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α(αp) phase surrounded by a secondary α colony(αs) in the α phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/d N values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low K values(<13.8). The differences that are observed between the crack propagation behaviors(in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αscolony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αpand α clusters have a large size.However, in the columnar grain region, small and randomly distributed αplamellae generate a zigzagshaped propagation path with a reduction in the da/d N value. Additionally, the change in the size of the αp lamellae in the equiaxed grains(heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.