Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. ...Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and in? ammatory processes, white adipose tissue plays a critical role, not only as an energy store but also as an important endocrine organ. The obese state is characterised by a low-grade systemic in? ammation, mainly as a result of increased adipocytes as well as fat resident-and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. Activation of the innate immune system plays a major role in hepatic steatosis. Non-alcoholic fatty liver disease includes a wide spectrum of diseases, from pure steatosis to non-alcoholic steato-hepatitis in the absence of signif icant alcohol consumption. Although steatosis is considered a non-progressive disease, non-alcoholic steatohepatitis may deteriorate in advanced chronic liver diseases, cirrhosis, and hepatocellular carcinoma. An important parallel between obesityrelated pathology of adipose tissue and liver pertains to the emerging role of macrophages, and growing evidence suggests that Kupffer cells critically contribute to progression of non-alcoholic fatty liver disease. Moreover, a close link between specif ic immune activation and atherosclerosis has been well established, suggesting that fat can directly trigger immune responses. This review discusses the role of fat as "a matter of disturbance for the immune system" with a focus on hepatic steatosis.展开更多
AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80...AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80 with NAFLD [hepatic fat fraction(HFF) ≥ 5%] and 78 without fatty liver. Visceral adipose tissue(VAT), pancreatic fat fraction(PFF) and HFF were determined by magnetic resonance imaging. Estimates of insulin sensitivity were calculated using the homeostasis model assessment of insulin resistance(HOMA-IR), defined by fasting insulin and fasting glucose and whole-body insulin sensitivity index(WBISI), based on mean values of insulin and glucose obtained from oral glucose tolerance test and the corresponding fasting values. Patients were considered to have prediabetes if they had either:(1) impaired fasting glucose, defined as a fasting glucose level ≥ 100 mg/d L to < 126 mg/d L;(2) impaired glucose tolerance, defined as a 2 h glucose concentration between ≥ 140 mg/d L and < 200 mg/d L; or(3) hemoglobin A1 c value of ≥ 5.7% to < 6.5%.RESULTS: PFF was significantly higher in NAFLD patients compared with subjects without liver involvement. PFF was significantly associated with HFF and VAT, as well as fasting insulin, C peptide, HOMA-IR, and WBISI. The association between PFF and HFF was no longer significant after adjusting for age, gender, Tanner stage, body mass index(BMI)-SD score, and VAT. In multiple regression analysis withWBISI or HOMA-IR as the dependent variables, against the covariates age, gender, Tanner stage, BMI-SD score, VAT, PFF, and HFF, the only variable significantly associated with WBISI(standardized coefficient B,-0.398; P = 0.001) as well as HOMA-IR(0.353; P = 0.003) was HFF. Children with prediabetes had higher PFF and HFF than those without. PFF and HFF were significantly associated with prediabetes after adjustment for clinical variables. When all fat depots where included in the same model, only HFF remained significantly associated with prediabetes(OR = 3.38; 95%CI: 1.10展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过...【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过程中的作用仍未知,有待进一步研究。【方法】以秦川牛为研究对象,克隆得到Snail1 CDS区序列,构建Snail1时空表达谱,运用生物信息学软件对其功能结构及靶基因进行预测。进一步,通过RNAi干扰结合CCK8、EdU、细胞流式及实时荧光定量PCR等方法探究Snail1对牛脂肪细胞增殖的影响。【结果】秦川牛Snail1与NCBI公布序列相比存在2处碱基同义突变,其在秦川牛新生牛肺、肾周脂肪、小肠呈现较高丰度表达;而在成年牛中,Snail1在肾周脂肪组织中的表达量最高,背最长肌中的表达量次之,肺脏组织中的表达量最低。生物信息学分析发现,Snail1启动子区存在1个651 bp CpG岛及C/EBP、PPARα等与脂肪生成相关的转录因子结合位点。CKⅠ(Ser92/96)、CKⅡ(Ser25/119,Thr89)、CDK1(Ser13/104/112/119/143/183/214/221)、CDK5(Ser105/107)等多个细胞周期相关激酶可能参与了Snail1蛋白的磷酸化修饰。通过对牛已注释基因启动子区提取、靶基因预测及KEGG动态网络构建发现,成脂相关的MAPK、PI3K-Akt、mTOR等信号通路为Snail1参与脂肪生成相关的潜在节点信号通路。进一步,通过RNAi干扰试验对其功能研究表明,Snail1下调促进了牛前体脂肪细胞的增殖,增加了复制期阳性细胞的比例(P<0.01)且促进了G1/S细胞周期转换。RT-qPCR和Western-blot检测表明,干扰Snail1显著上调了促增殖调控基因CCNB1、CCND2、CDK2、CDK4(P<0.05)和蛋白的表达。【结论】Snail1在新生牛肾周脂肪及成年牛肾周脂肪和背最长肌中表达量相对较高。干扰Snail1促进了牛前体脂肪细胞的增殖、G1/S细胞周期转变和CCNB1、CCND2、CDK2、CDK4展开更多
This editorial focuses on the relationship between nonalcoholic fatty pancreas disease(NAFPD)and the development and remission of type 2 diabetes(T2D).NAFPD is characterized by intrapancreatic fatty deposition associa...This editorial focuses on the relationship between nonalcoholic fatty pancreas disease(NAFPD)and the development and remission of type 2 diabetes(T2D).NAFPD is characterized by intrapancreatic fatty deposition associated with obesity and not associated with alcohol abuse,viral infections,and other factors.Ectopic fat deposition in the pancreas is associated with the development of T2D,and the underlying mechanism is lipotoxicβ-cell dysfunction.However,the results on the relationship between intrapancreatic fat deposition(IPFD)andβ-cell function are conflicting.Regardless of the therapeutic approach,weight loss improves IPFD,glycemia,andβ-cell function.Pancreatic imaging is valuable for clinically monitoring and evaluating the management of T2D.展开更多
文摘Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and in? ammatory processes, white adipose tissue plays a critical role, not only as an energy store but also as an important endocrine organ. The obese state is characterised by a low-grade systemic in? ammation, mainly as a result of increased adipocytes as well as fat resident-and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. Activation of the innate immune system plays a major role in hepatic steatosis. Non-alcoholic fatty liver disease includes a wide spectrum of diseases, from pure steatosis to non-alcoholic steato-hepatitis in the absence of signif icant alcohol consumption. Although steatosis is considered a non-progressive disease, non-alcoholic steatohepatitis may deteriorate in advanced chronic liver diseases, cirrhosis, and hepatocellular carcinoma. An important parallel between obesityrelated pathology of adipose tissue and liver pertains to the emerging role of macrophages, and growing evidence suggests that Kupffer cells critically contribute to progression of non-alcoholic fatty liver disease. Moreover, a close link between specif ic immune activation and atherosclerosis has been well established, suggesting that fat can directly trigger immune responses. This review discusses the role of fat as "a matter of disturbance for the immune system" with a focus on hepatic steatosis.
基金Supported by Sapienza University of Rome(Progetti di Ricerca Universitaria 2011-2012)
文摘AIM: To analyze the associations of pancreatic fat with other fat depots and β-cell function in pediatric nonalcoholic fatty liver disease(NAFLD).METHODS: We examined 158 overweight/obese children and adolescents, 80 with NAFLD [hepatic fat fraction(HFF) ≥ 5%] and 78 without fatty liver. Visceral adipose tissue(VAT), pancreatic fat fraction(PFF) and HFF were determined by magnetic resonance imaging. Estimates of insulin sensitivity were calculated using the homeostasis model assessment of insulin resistance(HOMA-IR), defined by fasting insulin and fasting glucose and whole-body insulin sensitivity index(WBISI), based on mean values of insulin and glucose obtained from oral glucose tolerance test and the corresponding fasting values. Patients were considered to have prediabetes if they had either:(1) impaired fasting glucose, defined as a fasting glucose level ≥ 100 mg/d L to < 126 mg/d L;(2) impaired glucose tolerance, defined as a 2 h glucose concentration between ≥ 140 mg/d L and < 200 mg/d L; or(3) hemoglobin A1 c value of ≥ 5.7% to < 6.5%.RESULTS: PFF was significantly higher in NAFLD patients compared with subjects without liver involvement. PFF was significantly associated with HFF and VAT, as well as fasting insulin, C peptide, HOMA-IR, and WBISI. The association between PFF and HFF was no longer significant after adjusting for age, gender, Tanner stage, body mass index(BMI)-SD score, and VAT. In multiple regression analysis withWBISI or HOMA-IR as the dependent variables, against the covariates age, gender, Tanner stage, BMI-SD score, VAT, PFF, and HFF, the only variable significantly associated with WBISI(standardized coefficient B,-0.398; P = 0.001) as well as HOMA-IR(0.353; P = 0.003) was HFF. Children with prediabetes had higher PFF and HFF than those without. PFF and HFF were significantly associated with prediabetes after adjustment for clinical variables. When all fat depots where included in the same model, only HFF remained significantly associated with prediabetes(OR = 3.38; 95%CI: 1.10
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
文摘【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过程中的作用仍未知,有待进一步研究。【方法】以秦川牛为研究对象,克隆得到Snail1 CDS区序列,构建Snail1时空表达谱,运用生物信息学软件对其功能结构及靶基因进行预测。进一步,通过RNAi干扰结合CCK8、EdU、细胞流式及实时荧光定量PCR等方法探究Snail1对牛脂肪细胞增殖的影响。【结果】秦川牛Snail1与NCBI公布序列相比存在2处碱基同义突变,其在秦川牛新生牛肺、肾周脂肪、小肠呈现较高丰度表达;而在成年牛中,Snail1在肾周脂肪组织中的表达量最高,背最长肌中的表达量次之,肺脏组织中的表达量最低。生物信息学分析发现,Snail1启动子区存在1个651 bp CpG岛及C/EBP、PPARα等与脂肪生成相关的转录因子结合位点。CKⅠ(Ser92/96)、CKⅡ(Ser25/119,Thr89)、CDK1(Ser13/104/112/119/143/183/214/221)、CDK5(Ser105/107)等多个细胞周期相关激酶可能参与了Snail1蛋白的磷酸化修饰。通过对牛已注释基因启动子区提取、靶基因预测及KEGG动态网络构建发现,成脂相关的MAPK、PI3K-Akt、mTOR等信号通路为Snail1参与脂肪生成相关的潜在节点信号通路。进一步,通过RNAi干扰试验对其功能研究表明,Snail1下调促进了牛前体脂肪细胞的增殖,增加了复制期阳性细胞的比例(P<0.01)且促进了G1/S细胞周期转换。RT-qPCR和Western-blot检测表明,干扰Snail1显著上调了促增殖调控基因CCNB1、CCND2、CDK2、CDK4(P<0.05)和蛋白的表达。【结论】Snail1在新生牛肾周脂肪及成年牛肾周脂肪和背最长肌中表达量相对较高。干扰Snail1促进了牛前体脂肪细胞的增殖、G1/S细胞周期转变和CCNB1、CCND2、CDK2、CDK4
文摘This editorial focuses on the relationship between nonalcoholic fatty pancreas disease(NAFPD)and the development and remission of type 2 diabetes(T2D).NAFPD is characterized by intrapancreatic fatty deposition associated with obesity and not associated with alcohol abuse,viral infections,and other factors.Ectopic fat deposition in the pancreas is associated with the development of T2D,and the underlying mechanism is lipotoxicβ-cell dysfunction.However,the results on the relationship between intrapancreatic fat deposition(IPFD)andβ-cell function are conflicting.Regardless of the therapeutic approach,weight loss improves IPFD,glycemia,andβ-cell function.Pancreatic imaging is valuable for clinically monitoring and evaluating the management of T2D.