While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), littl...While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the recep- tors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry 1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line ofSpodopterafrugiperda (SFg). As expected, the descending order of cytotoxicity of CrylAc against the three cell lines in terms of 50% lethal concetration (LC50) was midgut (31.0μg/mL) 〉 fat body (59.0μg/mL) and SF9 cell (99.6μg/mL). By contrast, the fat body cell line (LC50 = 7.55μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0/xg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0μg/mL). Further, ligand blot showed the binding differences between CrylAc and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of CrylAc, which were enriched in midgut cells.展开更多
Nutrition utilization and by-product formation in cultured insect cells has been investigated in several insect cells and has been of great interest to cell culturists and physiologists. In this research the biochemic...Nutrition utilization and by-product formation in cultured insect cells has been investigated in several insect cells and has been of great interest to cell culturists and physiologists. In this research the biochemical changes in embryonic and fat body primary cultures of silkworm, Bombyx mori, have been compared. TC-100 medium supplemented with 10% and 20% FBS was used in embryonic and fat body primary cultures, respectively. Medium was renewed every week and the amount of glucose, uric acid, urea, total protein and alkaline phosphatase were measured in the samples from medium of primary cultures using spectrophotometeric methods. All biochemical macromolecules except uric acid showed significant changes. Glucose decreased in embryonic tissues, while in fat body culture its amount increased. Urea accumulation in embryonic culture was higher than in the fat body cultures. Since urea is a by-product, this accumulation could be due to higher utilization of amino acids. Total protein showed considerable changes and was consumed by embryonic culture more than the fat body' s. Alkaline phosphatase showed stronger activity in embryonic cells.展开更多
文摘While CrylAc has been known to bind with larval midgut proteins cad- herin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the recep- tors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry 1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line ofSpodopterafrugiperda (SFg). As expected, the descending order of cytotoxicity of CrylAc against the three cell lines in terms of 50% lethal concetration (LC50) was midgut (31.0μg/mL) 〉 fat body (59.0μg/mL) and SF9 cell (99.6μg/mL). By contrast, the fat body cell line (LC50 = 7.55μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0/xg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0μg/mL). Further, ligand blot showed the binding differences between CrylAc and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of CrylAc, which were enriched in midgut cells.
文摘Nutrition utilization and by-product formation in cultured insect cells has been investigated in several insect cells and has been of great interest to cell culturists and physiologists. In this research the biochemical changes in embryonic and fat body primary cultures of silkworm, Bombyx mori, have been compared. TC-100 medium supplemented with 10% and 20% FBS was used in embryonic and fat body primary cultures, respectively. Medium was renewed every week and the amount of glucose, uric acid, urea, total protein and alkaline phosphatase were measured in the samples from medium of primary cultures using spectrophotometeric methods. All biochemical macromolecules except uric acid showed significant changes. Glucose decreased in embryonic tissues, while in fat body culture its amount increased. Urea accumulation in embryonic culture was higher than in the fat body cultures. Since urea is a by-product, this accumulation could be due to higher utilization of amino acids. Total protein showed considerable changes and was consumed by embryonic culture more than the fat body' s. Alkaline phosphatase showed stronger activity in embryonic cells.