This work presents the design and implementation of a 2.4 GHz low power fast-settling frequency-presetting PLL frequency synthesizer in the 0.18μm CMOS process.A low power mixed-signal LC VCO,a low power dual mode pr...This work presents the design and implementation of a 2.4 GHz low power fast-settling frequency-presetting PLL frequency synthesizer in the 0.18μm CMOS process.A low power mixed-signal LC VCO,a low power dual mode prescaler and a digital processor with non-volatile memory are developed to greatly reduce the power consumption and the setting time.The digital processor can automatically calibrate the presetting frequency and accurately preset the frequency of the VCO under process variations.The experimental results demonstrate that the power consumption of the synthesizer is about 4 mA @ 1.8 V and that the typical setting time of the synthesizer is less than 3μs.展开更多
This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixedsignal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling tim...This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixedsignal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input was implemented in a 0.18 μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3 μs, and the phase noise is –108 dBc/Hz@1MHz. The reference spur is –52 dBc.展开更多
A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed. The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard f...A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed. The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer. An auxiliary non-volatile memory (NVM) is embedded to avoid the repetitive calibration process and to save power in practical application. This PLL is implemented in a 0.18 #m technology. The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5 #s over the entire frequency range. The LC-VCO with the stacked divide-by-2 has a good figure of merit of-193.5 dBc/Hz. The measured phase noise of frequency synthesizer is about -115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than -52 dBc. The whole frequency synthesizer consumes only 4.35 mA @ 1.8 V.展开更多
基金Project supported by the National High-Tech Research and Development Program of China(Nos.2008AA010703,2009AA011606).
文摘This work presents the design and implementation of a 2.4 GHz low power fast-settling frequency-presetting PLL frequency synthesizer in the 0.18μm CMOS process.A low power mixed-signal LC VCO,a low power dual mode prescaler and a digital processor with non-volatile memory are developed to greatly reduce the power consumption and the setting time.The digital processor can automatically calibrate the presetting frequency and accurately preset the frequency of the VCO under process variations.The experimental results demonstrate that the power consumption of the synthesizer is about 4 mA @ 1.8 V and that the typical setting time of the synthesizer is less than 3μs.
基金supported by the Special Funds for State Key Development for Basic Research of China (No. 2006CB921201)the National Natural Science Foundation of China (No. 90607007)
文摘This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixedsignal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input was implemented in a 0.18 μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3 μs, and the phase noise is –108 dBc/Hz@1MHz. The reference spur is –52 dBc.
基金Project supported by the National Natural Science Foundation of China(No.60976023)the National Science and Technology Major Project of China(Nos.2009ZX03007-001,2012ZX03004007-002)
文摘A low power fast settling multi-standard CMOS fractional-N frequency synthesizer is proposed. The current reusing and frequency presetting techniques are adopted to realize the low power fast settling multi-standard fractional-N frequency synthesizer. An auxiliary non-volatile memory (NVM) is embedded to avoid the repetitive calibration process and to save power in practical application. This PLL is implemented in a 0.18 #m technology. The frequency range is 0.3 to 2.54 GHz and the settling time is less than 5 #s over the entire frequency range. The LC-VCO with the stacked divide-by-2 has a good figure of merit of-193.5 dBc/Hz. The measured phase noise of frequency synthesizer is about -115 dBc/Hz at 1 MHz offset when the carrier frequency is 2.4 GHz and the reference spurs are less than -52 dBc. The whole frequency synthesizer consumes only 4.35 mA @ 1.8 V.