BACKGROUND Alzheimer's disease(AD),characterized by the ongoing deterioration of neural function,often presents alongside depressive features and greatly affects the quality of life of individuals living with the ...BACKGROUND Alzheimer's disease(AD),characterized by the ongoing deterioration of neural function,often presents alongside depressive features and greatly affects the quality of life of individuals living with the condition.Although several treatment methods exist,their efficacy is limited.In recent years,repetitive transcranial magnetic stimulation(rTMS)utilizing the theta burst stimulation(TBS)mode,specifically the intermittent TBS(iTBS),has demonstrated promising therapeutic potential in the management of neuropsychiatric disorders.AIM To examine the therapeutic efficacy of iTBS mode of rTMS for treating depressive symptoms in patients with AD.METHODS This retrospective study enrolled 105 individuals diagnosed with AD with depressive symptoms at Huzhou Third Municipal Hospital,affiliated with Huzhou University,between January 2020 and December 2023.Participants received standard pharmacological interventions and were categorized into control(n=53)and observation(n=52)groups based on treatment protocols.The observation group received iTBS mode of rTMS,while the control group received pseudo-stimulation.A comparative analysis evaluated psychological well-being,adverse events,and therapeutic at initiation of hospitalization(T0)and 15 days post-treatment(T1).RESULTS At T1,both groups exhibited a marked reduction in self-rating depression scale and Hamilton depression scale scores compared to T0.Furthermore,the observa-tion group showed a more pronounced decrease than the control group.By T1,the Mini-mental state examination scores for both groups had increased markedly from their initial T0 assessments.Importantly,the increase was particularly more substantial in the observation group than in the control group.Fourteen patients in the control group had ineffective treatment effects,while five patients in the observation group experienced the same.Additionally,the observation group experienced a substantially reduced incidence of ineffective treatment as compared to the control group(both P<0.05);there were no recor展开更多
High sensitivity and fast response are the figures of merit for benchmarking commercial sensors.Due to the advantages of intrinsic signal amplification,bionic ability,and mechanical flexibility,electrochemical transis...High sensitivity and fast response are the figures of merit for benchmarking commercial sensors.Due to the advantages of intrinsic signal amplification,bionic ability,and mechanical flexibility,electrochemical transistors(ECTs)have recently gained increasing popularity in constructing various sensors.In the current work,we have proposed a pulse-driven synaptic ECT for supersensitive and ultrafast biosensors.By pulsing the presynaptic input(drain bias,VD)and setting the modulation potential(gate bias)near transconductance intersection(VG,i),the synaptic ECT-based pH sensor can achieve a record high sensitivity up to 124 mV pH^(-1)(almost twice the Nernstian limit,59.2 mV pH^(-1))and an ultrafast response time as low as 8.75 ms(7169 times faster than the potentiostatic sensors,62.73 s).The proposed synaptic sensing strategy can effectively eliminate the transconductance fluctuation issue during the calibration process of the pH sensor and significantly reduce power consumption.Besides,the most sensitive working point at VG,i has been elaborately figured out through a series of detailed mathematical derivations,which is of great significance to provide higher sensitivity with quasi-nonfluctuating amplification capability.The proposed electrochemical synaptic transistor paired with an optimized operating gate offers a new paradigm for standardizing and commercializing high-performance biosensors.展开更多
基金Huzhou Science and Technology Plan Project,No.2019GZ38.
文摘BACKGROUND Alzheimer's disease(AD),characterized by the ongoing deterioration of neural function,often presents alongside depressive features and greatly affects the quality of life of individuals living with the condition.Although several treatment methods exist,their efficacy is limited.In recent years,repetitive transcranial magnetic stimulation(rTMS)utilizing the theta burst stimulation(TBS)mode,specifically the intermittent TBS(iTBS),has demonstrated promising therapeutic potential in the management of neuropsychiatric disorders.AIM To examine the therapeutic efficacy of iTBS mode of rTMS for treating depressive symptoms in patients with AD.METHODS This retrospective study enrolled 105 individuals diagnosed with AD with depressive symptoms at Huzhou Third Municipal Hospital,affiliated with Huzhou University,between January 2020 and December 2023.Participants received standard pharmacological interventions and were categorized into control(n=53)and observation(n=52)groups based on treatment protocols.The observation group received iTBS mode of rTMS,while the control group received pseudo-stimulation.A comparative analysis evaluated psychological well-being,adverse events,and therapeutic at initiation of hospitalization(T0)and 15 days post-treatment(T1).RESULTS At T1,both groups exhibited a marked reduction in self-rating depression scale and Hamilton depression scale scores compared to T0.Furthermore,the observa-tion group showed a more pronounced decrease than the control group.By T1,the Mini-mental state examination scores for both groups had increased markedly from their initial T0 assessments.Importantly,the increase was particularly more substantial in the observation group than in the control group.Fourteen patients in the control group had ineffective treatment effects,while five patients in the observation group experienced the same.Additionally,the observation group experienced a substantially reduced incidence of ineffective treatment as compared to the control group(both P<0.05);there were no recor
基金National Natural Science Foundation of China,Grant/Award Numbers:61703298,51975400,52073031,52175542Natural Science Foundation of Shanxi Province,Grant/Award Number:20210302123136+3 种基金China Postdoctoral Science Foundation,Grant/Award Number:2020M673646National Key Research and Development Program of China,Grant/Award Numbers:2021YFB3200304,2016YFA0202703Beijing Nova Program,Grant/Award Number:Z211100002121148Patent Transformation Special Program of Shanxi Province,Grant/Award Number:202304012。
文摘High sensitivity and fast response are the figures of merit for benchmarking commercial sensors.Due to the advantages of intrinsic signal amplification,bionic ability,and mechanical flexibility,electrochemical transistors(ECTs)have recently gained increasing popularity in constructing various sensors.In the current work,we have proposed a pulse-driven synaptic ECT for supersensitive and ultrafast biosensors.By pulsing the presynaptic input(drain bias,VD)and setting the modulation potential(gate bias)near transconductance intersection(VG,i),the synaptic ECT-based pH sensor can achieve a record high sensitivity up to 124 mV pH^(-1)(almost twice the Nernstian limit,59.2 mV pH^(-1))and an ultrafast response time as low as 8.75 ms(7169 times faster than the potentiostatic sensors,62.73 s).The proposed synaptic sensing strategy can effectively eliminate the transconductance fluctuation issue during the calibration process of the pH sensor and significantly reduce power consumption.Besides,the most sensitive working point at VG,i has been elaborately figured out through a series of detailed mathematical derivations,which is of great significance to provide higher sensitivity with quasi-nonfluctuating amplification capability.The proposed electrochemical synaptic transistor paired with an optimized operating gate offers a new paradigm for standardizing and commercializing high-performance biosensors.