在使用点云FPFH(Fast Point Feature Histograms)特征进行三维物体识别或配准时,人为主观调整邻域半径计算FPFH特征描述符具有随意性、低效性,整个过程不能自动化完成。针对该问题,提出了自适应邻域选择的FPFH特征提取算法。首先,对多...在使用点云FPFH(Fast Point Feature Histograms)特征进行三维物体识别或配准时,人为主观调整邻域半径计算FPFH特征描述符具有随意性、低效性,整个过程不能自动化完成。针对该问题,提出了自适应邻域选择的FPFH特征提取算法。首先,对多对点云估算点云密度;然后,计算多个邻域半径以提取FPFH特征用于SAC-IA配准,统计配准性能最优时的半径与点云密度值,使用三次样条插值拟合法求出函数表达式,形成自适应邻域选择的FPFH特征提取算法。实验结果表明,该算法根据点云密度自适应选择合适的邻域半径,提升了FPFH特征匹配的性能,同时加快了运算速度,具有指导价值。展开更多
激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(F...激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(Fast Point Feature Histograms, FPFH)提取关键点特征,嵌入多核多线程并行处理模式(OpenMP)提高特征提取速度;然后基于提取的FPFH特征,使用采样一致性初始配准算法(Sample Consensus Initial Alignment, SAC-IA)进行相似特征点粗配准,获取点云集间的初始旋转平移变换矩阵;最后采用ICP算法进行精配准,同时采用最优节点优先(Best Bin First, BBF)优化K-D tree近邻搜索法来加速对应关系点对的搜索,并设定动态阈值消除错误对应点对,提高配准快速性和准确性。对两个实例的配准点云进行了实验验证,结果表明,提出的优化配准算法具有明显速度优势和精度优势。展开更多
文摘在使用点云FPFH(Fast Point Feature Histograms)特征进行三维物体识别或配准时,人为主观调整邻域半径计算FPFH特征描述符具有随意性、低效性,整个过程不能自动化完成。针对该问题,提出了自适应邻域选择的FPFH特征提取算法。首先,对多对点云估算点云密度;然后,计算多个邻域半径以提取FPFH特征用于SAC-IA配准,统计配准性能最优时的半径与点云密度值,使用三次样条插值拟合法求出函数表达式,形成自适应邻域选择的FPFH特征提取算法。实验结果表明,该算法根据点云密度自适应选择合适的邻域半径,提升了FPFH特征匹配的性能,同时加快了运算速度,具有指导价值。