Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form vi...Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance by planktonic cells and biofilms of S. mutans UA159. Furthermore, the influence of the agent on S. mutans gene expression and ability to form biofilms in the presence of other oral bacteria (Streptococcus oralis (S. oralis) 35037 and Actinomyces naeslundii (.4. naeslundil) 12104) was also examined. In general, tt-farnesol (1 mmol-L-1) significantly increased the membrane proton permeability and reduced glycolytie activity of S. mutans in the planktonic state and in biofilms (P〈0.05). Moreover, topical applications of 1 mmol-L"l tt-farnesol twice daily (1 min exposure/treatment) reduced biomass accumulation and prevented ecological shifts towards S. mutans dominance within mixed-species biofilms after introduction of 1% sucrose. S. oralis (a non-cariogenie organism) became the major species after treatments with tt-farnesol, whereas vehicle-treated biofilms contained mostly S. mutans (〉90% of total bacterial population). However, the agent did not affect significantly the expression of S. mutans genes involved in acidogenicity, acid tolerance or polysaccharide synthesis in the treated biofilms. Our data indicate that tt-farnesoi may affect the competi- tiveness of S. mutans in a mixed-species environment by primarily disrupting the membrane function and physiology of this bacterium. This naturally occurring terpenoid could be a potentially useful adjunctive agent to the current anti-biofilm/anti-caries chemotherapeutic strategies.展开更多
以苹果黄蚜AphiscitricolavanderGoot为试虫,对金合欢醇和烟碱的联合杀蚜活性进行了测定,以期为开发植物源杀蚜剂产品奠定基础。室内毒力测定采用微量点滴法;田间药效试验参照国家标准进行。金合欢醇和烟碱混用具有明显的杀蚜增效作用,...以苹果黄蚜AphiscitricolavanderGoot为试虫,对金合欢醇和烟碱的联合杀蚜活性进行了测定,以期为开发植物源杀蚜剂产品奠定基础。室内毒力测定采用微量点滴法;田间药效试验参照国家标准进行。金合欢醇和烟碱混用具有明显的杀蚜增效作用,在最佳质量配比(金合欢醇:烟碱=4.82:1)下,共毒系数(CTC)达151.63;经过对溶剂、表面活性剂等助剂的筛选,研制出6%烟碱·金合欢醇可溶液剂,配方为金合欢醇(5%)、烟碱(1%)、表面活性剂(10%)、溶剂(84%),质量检测符合可溶液剂国家质量标准;田间药效试验表明,以126.0 g a.i./hm^2常量喷雾,药后7 d对小麦上的麦长管蚜Sitobion avenae Fabricius和麦二叉蚜Schizaphis graminum(Rondani)混合种群的防效达87.80%,以115.5 g a.i./hm^2常量喷雾,药后7d对苹果黄蚜的防效在81%以上。可见,金合欢醇和烟碱复配具有显著的杀蚜增效作用,具有进一步开发潜力。展开更多
Streptococcus mutans is a primary etiological agent of dental caries.Farnesol,as a potential antimicrobial agent,inhibits the development of S.mutans biofilm.In this study,we hypothesized that farnesol inhibits caries...Streptococcus mutans is a primary etiological agent of dental caries.Farnesol,as a potential antimicrobial agent,inhibits the development of S.mutans biofilm.In this study,we hypothesized that farnesol inhibits caries development in vitro and interferes with biofilm fonnation by regulating virulence-associated gene expression.The inhibitory effects of farnesol to S.mutans biofilms on enamel surfaces were investigated by determining micro-hardness and calcium measurements.Additionally,the morphological changes of S.mutans biofilms were compared using field emission scanning electron microscopy and confocal laser scanning microscopy,and the vitality and oxygen sensitivity of S.mutans biofilms were compared using MTT assays.To investigate the molecular mechanisms of farnesol's effects,expressions of possible target genes luxS,brpA,ffh,recA,nth,and smx were analyzed using reverse-transcription polymerase chain reaction(PCR) and quantitative PCR.Farnesol-treated groups exhibited significantly higher micro-hardness on the enamel surface and lower calcium concentration of the supernatants as compared to the-untreated control.Microscopy revealed that a thinner film with less extracellular matrix formed in the farnesol-treated groups.As compared to the-untreated control,farnesol inhibited biofilm formation by 26.4%with500 μmol/L and by 37.1%with 1,000 μmol/L(P〈 0.05).Last,decreased transcription levels of luxS,brpA,ffh,recA,nth,and smx genes were expressed in farnesol-treated biofilms.In vitro farnesol inhibits caries development and S.mutans biofilm formation.The regulation of luxS,brpA,ffh,recA,nth,and smx genes may contribute to the inhibitory effects of farnesol.展开更多
基金supported by IADR/GSK Innovation in Oral Care Award, USPHS Research grant 1R01DE 018023 from the National Institute of Dental and Craniofacial Research (National Institutes of Health)Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0071090)
文摘Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance by planktonic cells and biofilms of S. mutans UA159. Furthermore, the influence of the agent on S. mutans gene expression and ability to form biofilms in the presence of other oral bacteria (Streptococcus oralis (S. oralis) 35037 and Actinomyces naeslundii (.4. naeslundil) 12104) was also examined. In general, tt-farnesol (1 mmol-L-1) significantly increased the membrane proton permeability and reduced glycolytie activity of S. mutans in the planktonic state and in biofilms (P〈0.05). Moreover, topical applications of 1 mmol-L"l tt-farnesol twice daily (1 min exposure/treatment) reduced biomass accumulation and prevented ecological shifts towards S. mutans dominance within mixed-species biofilms after introduction of 1% sucrose. S. oralis (a non-cariogenie organism) became the major species after treatments with tt-farnesol, whereas vehicle-treated biofilms contained mostly S. mutans (〉90% of total bacterial population). However, the agent did not affect significantly the expression of S. mutans genes involved in acidogenicity, acid tolerance or polysaccharide synthesis in the treated biofilms. Our data indicate that tt-farnesoi may affect the competi- tiveness of S. mutans in a mixed-species environment by primarily disrupting the membrane function and physiology of this bacterium. This naturally occurring terpenoid could be a potentially useful adjunctive agent to the current anti-biofilm/anti-caries chemotherapeutic strategies.
文摘以苹果黄蚜AphiscitricolavanderGoot为试虫,对金合欢醇和烟碱的联合杀蚜活性进行了测定,以期为开发植物源杀蚜剂产品奠定基础。室内毒力测定采用微量点滴法;田间药效试验参照国家标准进行。金合欢醇和烟碱混用具有明显的杀蚜增效作用,在最佳质量配比(金合欢醇:烟碱=4.82:1)下,共毒系数(CTC)达151.63;经过对溶剂、表面活性剂等助剂的筛选,研制出6%烟碱·金合欢醇可溶液剂,配方为金合欢醇(5%)、烟碱(1%)、表面活性剂(10%)、溶剂(84%),质量检测符合可溶液剂国家质量标准;田间药效试验表明,以126.0 g a.i./hm^2常量喷雾,药后7 d对小麦上的麦长管蚜Sitobion avenae Fabricius和麦二叉蚜Schizaphis graminum(Rondani)混合种群的防效达87.80%,以115.5 g a.i./hm^2常量喷雾,药后7d对苹果黄蚜的防效在81%以上。可见,金合欢醇和烟碱复配具有显著的杀蚜增效作用,具有进一步开发潜力。
基金National Natural Sciences Foundation of China (Grant No.81271151 and Grant No.81371156)Jiangsu Qinglan Project Foundation(2012)The Foundation of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD,2014-37)
文摘Streptococcus mutans is a primary etiological agent of dental caries.Farnesol,as a potential antimicrobial agent,inhibits the development of S.mutans biofilm.In this study,we hypothesized that farnesol inhibits caries development in vitro and interferes with biofilm fonnation by regulating virulence-associated gene expression.The inhibitory effects of farnesol to S.mutans biofilms on enamel surfaces were investigated by determining micro-hardness and calcium measurements.Additionally,the morphological changes of S.mutans biofilms were compared using field emission scanning electron microscopy and confocal laser scanning microscopy,and the vitality and oxygen sensitivity of S.mutans biofilms were compared using MTT assays.To investigate the molecular mechanisms of farnesol's effects,expressions of possible target genes luxS,brpA,ffh,recA,nth,and smx were analyzed using reverse-transcription polymerase chain reaction(PCR) and quantitative PCR.Farnesol-treated groups exhibited significantly higher micro-hardness on the enamel surface and lower calcium concentration of the supernatants as compared to the-untreated control.Microscopy revealed that a thinner film with less extracellular matrix formed in the farnesol-treated groups.As compared to the-untreated control,farnesol inhibited biofilm formation by 26.4%with500 μmol/L and by 37.1%with 1,000 μmol/L(P〈 0.05).Last,decreased transcription levels of luxS,brpA,ffh,recA,nth,and smx genes were expressed in farnesol-treated biofilms.In vitro farnesol inhibits caries development and S.mutans biofilm formation.The regulation of luxS,brpA,ffh,recA,nth,and smx genes may contribute to the inhibitory effects of farnesol.