Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design...Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.展开更多
基金the National Natural Science Foundation of China(No.51175502)
文摘Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.