One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both prote...One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties.展开更多
Tissue factor(TF), the cell surface receptor and requisite cofactor for the inactive serine protease factor VⅡa(VⅡa), binds VⅡa and its zymogen factor VⅡ with picomolar affinity on the cell surface. The TF:V...Tissue factor(TF), the cell surface receptor and requisite cofactor for the inactive serine protease factor VⅡa(VⅡa), binds VⅡa and its zymogen factor VⅡ with picomolar affinity on the cell surface. The TF:VⅡa complex proteolytically converts downstream zymogen factors X and IX to their active protease states in the cascade responsible for thrombogenesis and hemostasis. The TF pathway also produces cellular signaling through protease activated receptors. Here we present a crystal structure of the completely intact surface domain of TF in complex with VⅡa that reveals a significant conformational difference as compared to free TF. A long loop of residue 78~91 of the tissue factor(named Ω loop here) was found to have well-ordered conformation, whereas this loop in free TF has an expanded conformation and is largely disordered. This loop adopts a tight conformation consisting of five β turns in the TF:VⅡa complex. The Ω loop is located at the interface of the proteins of the complex, has a few interactions with VⅡa, and is possible to accommodate the sequence variations of TF in different mammalian species.展开更多
Present study deals with the effects of glyphosate-based herbicide,Excel Mera 71 on Anabas testudineus,Heteropnestes fossilis and Oreochromis niloticus in field conditions(1.85 kg/ha)based on anti-oxidative,metabolic ...Present study deals with the effects of glyphosate-based herbicide,Excel Mera 71 on Anabas testudineus,Heteropnestes fossilis and Oreochromis niloticus in field conditions(1.85 kg/ha)based on anti-oxidative,metabolic and digestive responses.For this study following biomarkers viz.,acetylcholinesterase(AChE),lipid peroxidation(LPO),catalase(CAT),glutathione-S-transferase(GST),alkaline phosphatase(ALP),aspartate aminotransferase(AST),alanine aminotransferase(ALT),amylase,lipase and protease were investigated in gill,stomach,intestine,liver,kidney,brain,muscle and spinal cord of the concerned fish species.Enzyme activities were significantly altered by glyphosate exposure after 30 days,these activities were tissue as well as species specific.The results suggested that these biomarkers could be used to assess the ecological risks of glyphosate on fish.Bioaccumulation factor(BAF)studied in different aquatic natural macrophytes showed order of Alternanthera philoxeroides>Azolla pinnata>Lemna sp.(Minor)>Lemna sp.(Major)>Pistia stratiotes,while transfer factor(TF)showed the order of Pistia stratiotes>Alternanthera philoxeroides>Lemna sp.Bioconcentration factor(BCF)study showed maximum accumulation of glyphosate in liver,kidney or intestine,and minimum either in bone or stomach irrespective of fish species.An integrated biomarker response(IBR),which uses a battery of biomarkers to calculate the standardized scores for each biomarker responses ranging from physiological to biochemical/molecular responses,was evaluated by combining the multiple biomarkers into a single value to evaluate quantitatively the toxicological effects of glyphosate.In general,the multiple indices exhibited variations and A.testudineus was more affected than other fish species;maximum IBR value was observed for LPO and minimum in case of ALT.The order of integrated biomarkers caused by glyphosate treatment was recorded as follows:LPO>Amylase>CAT>AST>Protease>Lipase>ALP>GST>AChE>ALT for A.testudineus,LPO>AChE>AST>Protease>CAT>Amylase>Lipase>GST>ALP>A展开更多
The past two decades revealed a plethora of Ca^2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics" approaches and bioinformatics are e...The past two decades revealed a plethora of Ca^2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics" approaches and bioinformatics are exposing Ca^2+-responsive cis-elements and the corresponding Ca^2+-responsive genes. Here, we review the current knowledge on Ca^2+-signaling pathways that regulate gene expression in plants, and we link these to mechanisms by which plants respond to biotic and abiotic stresses.展开更多
基金funded by the National Key Research and Development Program of China(2022YFD1201600)the earmarked fund for the China Agriculture Research System(CARS-26)+1 种基金the Fundamental Research Funds for the Central Universities,China(SWU-XDJH202308)the Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJQN202001418)。
文摘One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties.
基金financially supported by grants from National Natural Science Foundation of China(31370737,31400637,31570745,31670739)Ministry of Science and Technology(2017YFE0103200)
文摘Tissue factor(TF), the cell surface receptor and requisite cofactor for the inactive serine protease factor VⅡa(VⅡa), binds VⅡa and its zymogen factor VⅡ with picomolar affinity on the cell surface. The TF:VⅡa complex proteolytically converts downstream zymogen factors X and IX to their active protease states in the cascade responsible for thrombogenesis and hemostasis. The TF pathway also produces cellular signaling through protease activated receptors. Here we present a crystal structure of the completely intact surface domain of TF in complex with VⅡa that reveals a significant conformational difference as compared to free TF. A long loop of residue 78~91 of the tissue factor(named Ω loop here) was found to have well-ordered conformation, whereas this loop in free TF has an expanded conformation and is largely disordered. This loop adopts a tight conformation consisting of five β turns in the TF:VⅡa complex. The Ω loop is located at the interface of the proteins of the complex, has a few interactions with VⅡa, and is possible to accommodate the sequence variations of TF in different mammalian species.
基金The authors like to thank the Head,Department of Environmental Science,The University of Burdwan,Burdwan,West Bengal,India for providing the laboratory facilities and library facilities during the course of research.We also like to thank the INSPIRE Program Division,Department of Science&Technology,Govt.of India(DST/INSPIRE Fellowship/2011/164,Dt.29.09.2011)for the financial assistance.We are also thankful to the respective reviewers for improving our manuscript.
文摘Present study deals with the effects of glyphosate-based herbicide,Excel Mera 71 on Anabas testudineus,Heteropnestes fossilis and Oreochromis niloticus in field conditions(1.85 kg/ha)based on anti-oxidative,metabolic and digestive responses.For this study following biomarkers viz.,acetylcholinesterase(AChE),lipid peroxidation(LPO),catalase(CAT),glutathione-S-transferase(GST),alkaline phosphatase(ALP),aspartate aminotransferase(AST),alanine aminotransferase(ALT),amylase,lipase and protease were investigated in gill,stomach,intestine,liver,kidney,brain,muscle and spinal cord of the concerned fish species.Enzyme activities were significantly altered by glyphosate exposure after 30 days,these activities were tissue as well as species specific.The results suggested that these biomarkers could be used to assess the ecological risks of glyphosate on fish.Bioaccumulation factor(BAF)studied in different aquatic natural macrophytes showed order of Alternanthera philoxeroides>Azolla pinnata>Lemna sp.(Minor)>Lemna sp.(Major)>Pistia stratiotes,while transfer factor(TF)showed the order of Pistia stratiotes>Alternanthera philoxeroides>Lemna sp.Bioconcentration factor(BCF)study showed maximum accumulation of glyphosate in liver,kidney or intestine,and minimum either in bone or stomach irrespective of fish species.An integrated biomarker response(IBR),which uses a battery of biomarkers to calculate the standardized scores for each biomarker responses ranging from physiological to biochemical/molecular responses,was evaluated by combining the multiple biomarkers into a single value to evaluate quantitatively the toxicological effects of glyphosate.In general,the multiple indices exhibited variations and A.testudineus was more affected than other fish species;maximum IBR value was observed for LPO and minimum in case of ALT.The order of integrated biomarkers caused by glyphosate treatment was recorded as follows:LPO>Amylase>CAT>AST>Protease>Lipase>ALP>GST>AChE>ALT for A.testudineus,LPO>AChE>AST>Protease>CAT>Amylase>Lipase>GST>ALP>A
文摘The past two decades revealed a plethora of Ca^2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics" approaches and bioinformatics are exposing Ca^2+-responsive cis-elements and the corresponding Ca^2+-responsive genes. Here, we review the current knowledge on Ca^2+-signaling pathways that regulate gene expression in plants, and we link these to mechanisms by which plants respond to biotic and abiotic stresses.