为了探究影响AlSi9Cu2Mg铝硅合金微动磨损的因素以及对磨损状态下该材料的微动寿命进行预测,本文建立了基于Archard弹性理论的网格自适应算法,并进行了摩擦疲劳有限元模拟,讨论了滑移幅度以及磨损分区因子对微动磨损的影响;使用SWT、F...为了探究影响AlSi9Cu2Mg铝硅合金微动磨损的因素以及对磨损状态下该材料的微动寿命进行预测,本文建立了基于Archard弹性理论的网格自适应算法,并进行了摩擦疲劳有限元模拟,讨论了滑移幅度以及磨损分区因子对微动磨损的影响;使用SWT、F多轴疲劳损伤参数与临界距离理论(theory of critical distance)对磨损状态下的微动疲劳寿命进行预测.有限元仿真结果显示,滑移幅度以及磨损分区因子对微动磨损量均产生影响,接触表面在微动接触后缘总是出现压力的峰值,由于接触后缘的应力梯度较大,证明微动裂纹总是发生在接触后缘,与实验观察到的现象一致.通过两种多轴疲劳参数及临界距离理论得到的寿命预测分布显示,无论哪一个参数,考虑磨损时的预测寿命均优于不考虑磨损时的预测寿命,且多轴疲劳参数F在考虑磨损状态下的寿命预测值与实验更为吻合.最终的结果表明,基于Archard磨损定律的自适应网格算法的有限元分析与临界距离理论的损伤参数法相结合的分析流程,可以更为有效地预测AlSi9Cu2Mg的微动疲劳寿命.展开更多
This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation pro...This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.展开更多
In the current work,molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively.This compa...In the current work,molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively.This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2.The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively.Two different concentrations(1:6 and 1:8.5)of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase.The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics.The concentration of CO2 molecules in water played a significant role in growth kinetics,and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate.On the contrary,methane hydrate growth was independent of methane molecule concentration in the aqueous phase.We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2,the growth for carbon dioxide hydrate was very slow in the beginning.展开更多
文摘为了探究影响AlSi9Cu2Mg铝硅合金微动磨损的因素以及对磨损状态下该材料的微动寿命进行预测,本文建立了基于Archard弹性理论的网格自适应算法,并进行了摩擦疲劳有限元模拟,讨论了滑移幅度以及磨损分区因子对微动磨损的影响;使用SWT、F多轴疲劳损伤参数与临界距离理论(theory of critical distance)对磨损状态下的微动疲劳寿命进行预测.有限元仿真结果显示,滑移幅度以及磨损分区因子对微动磨损量均产生影响,接触表面在微动接触后缘总是出现压力的峰值,由于接触后缘的应力梯度较大,证明微动裂纹总是发生在接触后缘,与实验观察到的现象一致.通过两种多轴疲劳参数及临界距离理论得到的寿命预测分布显示,无论哪一个参数,考虑磨损时的预测寿命均优于不考虑磨损时的预测寿命,且多轴疲劳参数F在考虑磨损状态下的寿命预测值与实验更为吻合.最终的结果表明,基于Archard磨损定律的自适应网格算法的有限元分析与临界距离理论的损伤参数法相结合的分析流程,可以更为有效地预测AlSi9Cu2Mg的微动疲劳寿命.
基金Project supported by the National Natural Science Foundation of China(Grant No10574097)
文摘This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.
文摘In the current work,molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively.This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2.The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively.Two different concentrations(1:6 and 1:8.5)of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase.The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics.The concentration of CO2 molecules in water played a significant role in growth kinetics,and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate.On the contrary,methane hydrate growth was independent of methane molecule concentration in the aqueous phase.We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2,the growth for carbon dioxide hydrate was very slow in the beginning.