期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于特征工程和MRFO-ET的短期风电功率预测 被引量:3
1
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第3期185-194,共10页
为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取... 为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取小时属性特征,并通过对风速、风向和温度等原始气象特征进行特征创造,从而充分挖掘历史数据的隐含信息,同时通过PCA方法降低数据维度。其次,将降维后的数据输入ET模型,并利用MRFO优化ET模型的参数;最后,以新疆某风电场实测数据进行了算例仿真。结果表明:与5种典型机器学习模型相比,ET模型具有更高的风电预测准确度。与单一ET模型相比,特征工程-ET模型较大程度地提高了预测精度,验证了特征工程方法的有效性。在同等条件下,特征工程-MRFO-ET模型比使用特征工程-ET模型均方根误差和平均绝对误差分别降低了29.46%和36.54%,而拟合优度系数提高了3.97%。与此同时,特征工程-MRFO-ET模型也比特征工程-GA-ET模型和特征工程-PSO-ET模型拥有更高的预测精度。研究成果可为解决短期风电功率预测问题提供了一种新的思路。 展开更多
关键词 短期风电功率预测 特征工程 主成分分析 蝠鲼觅食优化算法 极端随机树 新能源 影响因素 人工智能算法
下载PDF
基于MICE_RF的组合赋权—极限随机树岩爆预测模型
2
作者 温廷新 苏焕博 《黄金科学技术》 CSCD 2022年第3期392-403,共12页
目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺... 目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺失数据;然后,由改进层次分析法(IAHP)和基于指标相关性的权重确定方法(CRITIC)确定指标主、客观权重,并引入权向量距离概念对指标组合赋权;最后,将插补和赋权后数据集采用ET算法,构建岩爆等级预测模型。利用国内外工程实例数据进行20次随机抽样试验,并与其他模型进行对比分析。结果表明:MICE_RF插补后可显著提高岩爆模型预测效果;改进AHPCRITIC法较改进前更具优势,该模型平均预测准确率为93.10%,各比较指标结果均优于对比模型,预测结果更稳定。 展开更多
关键词 岩爆等级预测 数据缺失 链式随机森林的多重插补(MICE_RF)算法 组合赋权 权向量距离 极限随机树(et)算法
下载PDF
基于CNN和ET的智能ECG识别方法 被引量:1
3
作者 张丹 何志涛 +1 位作者 陈永毅 尹武涛 《浙江工业大学学报》 CAS 北大核心 2021年第6期602-607,共6页
心电图(ECG)是检测心血管疾病的重要依据之一,通过对各类心电图的实时分析,可以达到检测被测者房颤及心脏健康情况的目的。采用基于卷积神经网络(CNN)和极端随机树(ET)混合模型的心电信号分类方法,通过连续小波变换对数据进行滤波处理,... 心电图(ECG)是检测心血管疾病的重要依据之一,通过对各类心电图的实时分析,可以达到检测被测者房颤及心脏健康情况的目的。采用基于卷积神经网络(CNN)和极端随机树(ET)混合模型的心电信号分类方法,通过连续小波变换对数据进行滤波处理,在此基础上通过CNN-ET混合模型,实现了心电信号的分类。方法结合了CNN对一维数据的强大表征能力,通过ET降低了异常值影响,预防了过拟合问题,具有较强的泛化能力。将所提出的方法在MIT-BIH数据集上进行了测试,在5类心电心拍次数不平衡问题检测中准确率达到99.95%,与现有方法相比,该改进方法进一步提高了ECG信号分类的精确度。 展开更多
关键词 卷积神经网络 小波分解 极端随机树 ECG分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部