This study examined regional prolonged low temperature (PLT) events in China from the observational station data for the period 1960–2008 using the new criteria. The new definition of a site PLT event is that the d...This study examined regional prolonged low temperature (PLT) events in China from the observational station data for the period 1960–2008 using the new criteria. The new definition of a site PLT event is that the daily minimum temperature does not exceed the 10th percentile threshold of the local daily minimum temperature climatology for at least 5 days at a station. The regional PLT event is defined as at least five adjacent stations exhibiting site PLT simultaneously for 5 d. Under the new definition, 552 regional PLT events were identified, and three indices: duration, extent, and intensity, as well as a comprehensive index (CI) were used to quantify the event severity. In addition, geographical patterns and temporal variations of regional PLT events were investigated using three event categories: strong, moderate, and weak. Spatially, strong events were mainly located in the north of Xinjiang and along the Yangtze River to the south of the Yangtze River; moderate events occurred in Xinjiang and south of the Yangtze River; and weak events occurred south of the Yellow River. The variation for the annual frequency of regional PLT events in China in the last 49 years showed a significant decreasing trend with a rate of-1.99 times per decade, and the significant transition decade was the 1980s.展开更多
By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pre...By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.展开更多
利用常规观测资料、NCEP再分析资料及卫星TBB资料,对2013年4月19-20日山东极端暴雪过程的环流背景、物理量诊断、地形作用及其中尺度特征等进行了综合分析。结果表明:此次暴雪天气是以500 h Pa高空槽、700 h Pa西南低空急流及切变线、以...利用常规观测资料、NCEP再分析资料及卫星TBB资料,对2013年4月19-20日山东极端暴雪过程的环流背景、物理量诊断、地形作用及其中尺度特征等进行了综合分析。结果表明:此次暴雪天气是以500 h Pa高空槽、700 h Pa西南低空急流及切变线、以及850 h Pa以下低层东北风作为环流背景的回流性质降雪;暴雪期间,相对湿度≥90%的高湿区明显下传,南方的暖湿空气沿着低层冷垫爬升,到达一定高度以后,水汽凝结产生降雪,强降雪落区并不位于强上升运动的中心位置,而是位于最大中心值的偏北一侧,在28°N-40°N之间高空有一明显的能量锋区,且随纬度的增高而向高空倾斜;近地面层有明显的辐合流场,TBB分布反映出暴雪期间有中小尺度系统配合,TBB最大值在-45^-40℃之间;此次极端暴雪过程中地形对温度的急剧下降起了重要的作用。展开更多
Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(...Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even >30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rat展开更多
基金supported jointly by the National Natural Science Foundation of China (GrantNo. 40975039)the Key Technologies R&D Program(Grant No. 2009BAC51B00)
文摘This study examined regional prolonged low temperature (PLT) events in China from the observational station data for the period 1960–2008 using the new criteria. The new definition of a site PLT event is that the daily minimum temperature does not exceed the 10th percentile threshold of the local daily minimum temperature climatology for at least 5 days at a station. The regional PLT event is defined as at least five adjacent stations exhibiting site PLT simultaneously for 5 d. Under the new definition, 552 regional PLT events were identified, and three indices: duration, extent, and intensity, as well as a comprehensive index (CI) were used to quantify the event severity. In addition, geographical patterns and temporal variations of regional PLT events were investigated using three event categories: strong, moderate, and weak. Spatially, strong events were mainly located in the north of Xinjiang and along the Yangtze River to the south of the Yangtze River; moderate events occurred in Xinjiang and south of the Yangtze River; and weak events occurred south of the Yellow River. The variation for the annual frequency of regional PLT events in China in the last 49 years showed a significant decreasing trend with a rate of-1.99 times per decade, and the significant transition decade was the 1980s.
基金supported by China Meteorological Administration (CMA) Specific Research on ClimateChange (No. CCSF-10-06)the National Key Scientific Research Program of Global Change (No. 2010CB951001)
文摘By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.
文摘利用常规观测资料、NCEP再分析资料及卫星TBB资料,对2013年4月19-20日山东极端暴雪过程的环流背景、物理量诊断、地形作用及其中尺度特征等进行了综合分析。结果表明:此次暴雪天气是以500 h Pa高空槽、700 h Pa西南低空急流及切变线、以及850 h Pa以下低层东北风作为环流背景的回流性质降雪;暴雪期间,相对湿度≥90%的高湿区明显下传,南方的暖湿空气沿着低层冷垫爬升,到达一定高度以后,水汽凝结产生降雪,强降雪落区并不位于强上升运动的中心位置,而是位于最大中心值的偏北一侧,在28°N-40°N之间高空有一明显的能量锋区,且随纬度的增高而向高空倾斜;近地面层有明显的辐合流场,TBB分布反映出暴雪期间有中小尺度系统配合,TBB最大值在-45^-40℃之间;此次极端暴雪过程中地形对温度的急剧下降起了重要的作用。
基金supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201306011)the Research on Key Prediction Technology of Warm Sector Rainstorm(Grant No.YBGJXM(2017)1A-01)the National Natural Science Foundation of China(Grant No.41475041)
文摘Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even >30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rat