在前人工作的基础上,利用门限极值的广义Pareto分布理论和超出阈值峰(Peak Over Threshold,POT)方法,提出了一种确定湖泊参照状态浓度的新方法.该方法不仅能够给出更为精确的置信区间,而且克服了广义极值分布理论取用数据浪费等缺陷....在前人工作的基础上,利用门限极值的广义Pareto分布理论和超出阈值峰(Peak Over Threshold,POT)方法,提出了一种确定湖泊参照状态浓度的新方法.该方法不仅能够给出更为精确的置信区间,而且克服了广义极值分布理论取用数据浪费等缺陷.将该方法应用到太湖的水质基准参照状态中,通过POT方法对太湖8个站点1995~2006年总氮(TN),总磷(TP)和叶绿素a(Chl-a)的数据进行预处理,分别以-1.0mg/L,-0.05mg/L与-4μg/L作为它们观测值相反数的门限值,结果表明观测值的相反数符合广义Pareto分布,验证了方法的可行性.推荐采用25%分位点的值作为太湖总氮,总磷和叶绿素a的参照状态,即太湖的参照状态是:总氮0.66mg/L;总磷0.023mg/L;叶绿素a为1.27μg/L.最后分别得出了它们各自的95%置信区间,而且其精度明显高于广义极值分布理论结果.展开更多
For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) +...For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.展开更多
文摘在前人工作的基础上,利用门限极值的广义Pareto分布理论和超出阈值峰(Peak Over Threshold,POT)方法,提出了一种确定湖泊参照状态浓度的新方法.该方法不仅能够给出更为精确的置信区间,而且克服了广义极值分布理论取用数据浪费等缺陷.将该方法应用到太湖的水质基准参照状态中,通过POT方法对太湖8个站点1995~2006年总氮(TN),总磷(TP)和叶绿素a(Chl-a)的数据进行预处理,分别以-1.0mg/L,-0.05mg/L与-4μg/L作为它们观测值相反数的门限值,结果表明观测值的相反数符合广义Pareto分布,验证了方法的可行性.推荐采用25%分位点的值作为太湖总氮,总磷和叶绿素a的参照状态,即太湖的参照状态是:总氮0.66mg/L;总磷0.023mg/L;叶绿素a为1.27μg/L.最后分别得出了它们各自的95%置信区间,而且其精度明显高于广义极值分布理论结果.
基金Supported by NSFC(Nos.12071484,11871479,11931002)Hunan Provincial Natural Science Foundation(Nos.2020JJ4675,2018JJ2479)Mathematics and Interdisciplinary Sciences Project of CSU。
文摘For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s andt such that 2≤ s ≤ t, 0≤ m-s ≤ n-t, andre+n≤ 2s+t-1, we prove that if G has at least mn- (2(m - s) + n - t) edges then it contains a subdivision of the complete bipartite K(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn- (2(m - s) + n - t + 1) edges for this topological Turan type problem.