“Plasmas” up to a kilometer in size and behaving similarly to multicellular organisms have been filmed on 10 separate NASA space shuttle missions, over 200 miles above Earth within the thermosphere. These self-illum...“Plasmas” up to a kilometer in size and behaving similarly to multicellular organisms have been filmed on 10 separate NASA space shuttle missions, over 200 miles above Earth within the thermosphere. These self-illuminated “plasmas” are attracted to and may “feed on” electromagnetic radiation. They have different morphologies: 1) cone, 2) cloud, 3) donut, 4) spherical-cylindrical;and have been filmed flying towards and descending from the thermosphere into thunderstorms;congregating by the hundreds and interacting with satellites generating electromagnetic activity;approaching the Space Shuttles. Computerized analysis of flight path trajectories documents these plasmas travel at different velocities from different directions and change their angle of trajectory making 45°, 90°, and 180° shifts and follow each other. They’ve been filmed accelerating, slowing down, stopping, congregating, engaging in “hunter-predatory” behavior and intersecting plasmas leaving a plasma dust trail in their wake. Similar life-like behaviors have been demonstrated by plasmas created experimentally. “Plasmas” may have been photographed in the 1940s by WWII pilots (identified as “Foo fighters”);repeatedly observed and filmed by astronauts and military pilots and classified as Unidentified Aerial—Anomalous Phenomenon. Plasmas are not biological but may represent a form of pre-life that via the incorporation of elements common in space, could result in the synthesis of RNA. Plasmas constitute a fourth state of matter, are attracted to electromagnetic activity, and when observed in the lower atmosphere likely account for many of the UFO-UAP sightings over the centuries.展开更多
The history of how Homo sapiens out-survived the Neanderthals is recalled here with the goal of conceiving an edge in our coming competition with a faster, stronger artificial intelligence (AI) who has far greater cap...The history of how Homo sapiens out-survived the Neanderthals is recalled here with the goal of conceiving an edge in our coming competition with a faster, stronger artificial intelligence (AI) who has far greater capacity for information storage. The social and cognitive differences between the two hominid species, Homo sapiens and Homo neanderthalensis, are described. Based on findings from genomics, neuroscience, archaeology, and paleobiology, it appears possible that the capacities of Homo sapiens could outreach those of AIs in some ways. Especially important are human visuospatial, cultural, and, oddly enough, theological capacities, and the interaction of these capacities in group problem-solving. While communication between AIs is fast and can be widespread, the authors ask whether this is the right kind of communication for solving problems of survival. An important question is explored throughout: Is it ethical to withhold from AIs human-like capacities that may become possible to install? Finally, a worrisome question is broached: Is it the best course to create AIs in our own image to safeguard our existence in unknown future interactions with extraterrestrial species, both organic and inorganic?展开更多
The speed,capacity,and strength of artificial intelligence units(AIs)could pose a selfinflicted danger to humanity’s control of its own civilization.In this analysis,three biologically-based components of sentience t...The speed,capacity,and strength of artificial intelligence units(AIs)could pose a selfinflicted danger to humanity’s control of its own civilization.In this analysis,three biologically-based components of sentience that emerged in the course of human evolution are examined:cultural capacity,moral capacity,and religious capacity.The question is posed as to whether some measure of these capacities can be digitized and installed in AIs and so afford protection from their dominance.Theory on the emergence of moral capacity suggests it is most likely to be amenable to digitization and therefore installation in AIs.If so,transfer of that capacity,in creating commonalities between human and AI,may help to protect humanity from being destroyed.We hypothesize that religious thinking and culturally elaborated theological creativity could,in not being easily transferred,afford even more protection by constructing impenetrable barriers between humans and AIs,along real/counterfactual lines.Difficulties in digitizing and installing the three capacities at the foundation of sentience are examined within current discussions of“superalignment”of superintelligent AIs.Human values articulate differently for the three capacities,with different problems and capacities for supervision of superintelligent AIs.展开更多
This paper examines the influence of gravity on the bulk responses of a granular solid. The loading scenarios in this study include confined compression, rod penetration into a granular medium and discharging through ...This paper examines the influence of gravity on the bulk responses of a granular solid. The loading scenarios in this study include confined compression, rod penetration into a granular medium and discharging through an orifice. Similar loading and flow conditions are likely to be encountered in the stress and deformation regimes that regoliths are subjected to in extraterrestrial exploration activities including in situ resource utilisation processes. Both spherical and non-spherical particles were studied using the discrete element method (DEM). Whilst DEM is increasingly used to model granular solids, careful validations of the simulation outcomes are rather rare. Thus in addition to exploring the effect of gravity, this paper also compares DEM simulations with experiments under terrestrial condition to verify whether DEM can produce satisfactory predictions. The terrestrial experiments were conducted with great care and simulated closely using DEM. The key mechanical and geometrical properties for the particles were measured in laboratory tests for use in the DEM simulations. A series of DEM computations were then performed under reduced gravity to simulate these experiments under extraterrestrial environment. It was found that gravity has no noticeable effect on the force transmission in the confined compression case; the loading gradient in the rod penetration is linearly proportional to the gravity; the mass flow rate in silo discharge is proportional to square root of the gravity and the angle of repose increases with reducing gravity. These findings are in agreement with expectation and existing scientific evidence.展开更多
The Angstrom-Prescott formula is commonly used in climatological calculation methods of solar radiation simulation. Fitting the coefficients is carried out using linear regression and in recent years it has been found...The Angstrom-Prescott formula is commonly used in climatological calculation methods of solar radiation simulation. Fitting the coefficients is carried out using linear regression and in recent years it has been found that these coefifcients have obvious spatial variability. A common solution is to divide the study area into several subregions and ift the coefifcients one by one. Here, we use ground observation data for sunshine hours and solar radiation from 1961 to 2010. Adopting extraterrestrial radiation as the initial value, Angstrom-Prescott coefifcients are obtained by Geographically Weighted Regression at a national scale. The surfaces of solar radiation are obtained on the basis of the surfaces of sunshine hours interpolated by high accuracy surface modeling and astronomical radiation;results from spatial y nonstationary and error comparison tests show that Angstrom-Prescott coefifcients have signiifcant spatial nonstationarity. Compared to existing research methods, the method presented here achieves a better simulation effect.展开更多
Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a...Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.展开更多
Solar radiation is often shielded by terrain relief, especially in mountainous areas, before reaching the surface of the Earth. The objective of this paper is to study the spatial structures of the shielded astronomic...Solar radiation is often shielded by terrain relief, especially in mountainous areas, before reaching the surface of the Earth. The objective of this paper is to study the spatial structures of the shielded astronomical solar radiation(SASR) and the possible sunshine duration(PSD) over the Loess Plateau. To this end, we chose six test areas representing different landforms over the Loess Plateau and the software package of Matlab was used as the main computing platform. In each test area, 5-m-resolution digital elevation model established from 1:10,000 scale topographic maps was used to compute the corresponding slope, SASR and PSD. Then, we defined the concepts of the slope-mean SASR spectrum and the slope-mean PSD spectrum, and proposed a method to extract them from the computed slope, SASR and PSD over rectangular analysis windows. Using this method, we found both spectrums in a year or in a season for each of the four seasons in the six test areas. Each spectrum was found only when the area of the corresponding rectangular analysis window was greater than the corresponding stable area of the spectrum. The values of the two spectrums decreased when the slope increased.Furthermore, the values of the stable areas of the spectrums in a year or in a season were positively correlated with the variable coefficients of the slope or the profile curvature. The values of the stable areas of the two spectrums in a year or in a season may represent the minimum value of test areas for corresponding future research on the spatial structures of the SASR or PSD. All the findings herein suggest that the spatial structures of the PSD and the SASR are caused by the interactions between solar radiation and terrain relief and that the method for extracting either spectrum is effective for detecting their spatial structures. This study may deepen our understanding of the spatial structure of solar radiation and help us further explore the distribution of solar energy in mountainous regions.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
A selection of evidence, including a carbon isotopic excursion, iridium anomaly, fullerenes (C 60 and C 70 ) with trapped noble gases, microspherules and shocked quartz, is discussed in this paper. All the ev...A selection of evidence, including a carbon isotopic excursion, iridium anomaly, fullerenes (C 60 and C 70 ) with trapped noble gases, microspherules and shocked quartz, is discussed in this paper. All the evidence in hand favors the hypothesis that the PTB event was probably related to an extraterrestrial cause, and the impact would lead to great physical change, including large volcanic eruptions on the earth's surface. The ET markers for the CTB event could be considered only as an example, and cannot be taken as a unique standard of an ET event.展开更多
Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There ar...Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There are 1 to 30 grains of cosmic spherules per 2 kg of a sandstone sample taken from the bottom of a coarse sandstone bed of the Changzhougou Formation and 56 grains per 3.69 kg of a rock sample from silicified carbonate rocks of the Dahongyu Formation. The surface textures of cosmic spherules analyzed by means of the secondary electron imagery are identical with those reported from references either domestic or abroad. So far the geo-ages of 1.8 Ga and 1.6 Ga of cosmic spherules from the Changzhougou and Dahongyu formations might be older than those reported in the world. Table 1 gives the electron probe analysis data of cosmic spherules for 30 spherule grains and 44 testing points as follows (%): FeO, 80-95; Cr2O3; 0-9.56; NiO, 0-0.78; CoO, 0-0.46; indicating that the Cr2O3 content is higher and FeO content lower in the Changzhougou Formation than in the Dahongyu Formation. The helium isotopic data of cosmic spherules as well as their host rocks vary greatly between the Changzhougou and the Dahongyu formations as shown in Table 2. The data of cosmic spherules of the Changzhougou Formation vs the Dahongyu Formation are 57.5/1.23 in ^3He/^4He (10^-8); and 55.54/809.60 in ^4He (10^-6cm^3STP/g); those of coarse sandstone of the Changzhougou Formation vs silicified carbonate of the Dahongyu Formation are 3.39/2.59 in ^3He/^4He (10^-8) and 4.56/2.34 in ^3He (10^-6cm^3STP/g). The ratio of analytic data of helium isotopes are different for cosmic spherules and their host rocks; for example, the ^3He/^4He (10^-8) values are 16.96 and 0.48, and the ^4He (10^-6 cm^3STP/g) are 12.18 and 345.98 for the Changzhougou and Dahongyu formations respectively. It was reported that the world's oldest micrometeorites had been found in the Meso-Proterozoic Satakunta Formation, Finland. Howeve展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
New samples returned by China Chang’e-5(CE-5)mission offer an opportunity for studying the lunar geologic longevity,space weathering,and regolith evolution.The age determination of the CE-5 samples was among the firs...New samples returned by China Chang’e-5(CE-5)mission offer an opportunity for studying the lunar geologic longevity,space weathering,and regolith evolution.The age determination of the CE-5 samples was among the first scientific questions to be answered.However,the precious samples,most in the micrometer size range,challenge many traditional analyses on large single crystals of zircon developed for massive bulk samples.Here,we developed a non-destructive rapid screening of individual zirconium-containing particle for isotope geochronology based on a Micro X-ray fluorescence analysis(μXRF).The selected particles were verified via scanning electron microscopy(SEM),3D X-ray microscopy(XRM),and focused ion beam scanning electron microscopy(FIB-SEM)techniques,which showed that zirconium-bearing minerals with several microns were precisely positioned and readily suitable for site-specific isotopic dating by second ion mass spectrometry(SIMS).Such protocol could be also appli-cable in non-destructively screening other types of particles for different scientific purposes.We there-fore proposed a correlative workflow for comprehensively studying the CE-5 lunar samples from single particles on nanometer to atomic scales.Linking various microscopic and spectromicroscopic instru-ments together,this workflow consists of six steps:(1)single-particle selection with non-destructive μXRF technique,(2)2D/3D morphological and structural characterization with a correlative submicron 3D XRM and nanoscale resolution FIB-SEM imaging methods,(3)SEM analysis of the surface morphology and chemistry of the selected particle,(4)a series of microscopic and microbeam analyses(e.g.,SEM,electron probe microanalysis,and SIMS)on the cross-section of the selected particle to obtain structural,mineralogical,chemical,and isotopic features from the micron to nanometer scale,(5)advanced 2D/3D characterization and site-specific sample preparation of thin foil/tip specimens on a microregion of inter-est in the selected particle with FIB-SEM techniqu展开更多
How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or em...How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements(N and P) on the Hadean Earth, abiotic synthesis of life's building blocks(amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules(peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of(1) reductive gas phase,(2) alkaline pH,(3) freezing temperature,(4)fresh water,(5) dry/dry-wet cycle,(6) coupling with high energy reactions,(7) heating-cooling cycle in water, and(8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life.展开更多
Whether the platinum group elements (PGE) can be taken as the indicators of extraterrestrial materials is a very important and interesting scientific problem. It is discussed on the basis of systematic investigation a...Whether the platinum group elements (PGE) can be taken as the indicators of extraterrestrial materials is a very important and interesting scientific problem. It is discussed on the basis of systematic investigation and study of a great amount of related literature. The following conclusions can be obtained: (ⅰ) extraterrestrial impact event can cause the PGE anomaly; conversely, the PGE anomaly may not represent the existence of extraterrestrial impact event, because the PGE anomaly can be caused by many terrestrial events (e.g. volcanic activity); (ⅱ) the PGE anomaly, especially the global PGE anomaly can inspire us to think it from extraterrestrial event, but it may not be as useful as previously thought as unambiguous identifiers of large extraterrestrial impact event in the earth’s history.展开更多
The monthly extraterrestrial solar radiations (ESR) have been simulated separately for all the months of the year. The subtropical location and distribution of mountains and their height determine the spatial distribu...The monthly extraterrestrial solar radiations (ESR) have been simulated separately for all the months of the year. The subtropical location and distribution of mountains and their height determine the spatial distribution and amount of ESR in Pakistan. The mountains, piedmonts, enclosed valleys and plains show distinct diversity of ESR values. The assessment acknowledged that countries like Pakistan with ever increasing demand of energy receive sufficient amount of ESR that could be linked with solar irradiance where development of solar energy has great potential. The simulation was done with the help of ArcGIS based on distributed modeling.展开更多
For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expans...For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expansion of integrated transfer equation underestimates the VCD. This underestimation is as large as 35% when the amount of NO2 is 1 × 1017 cm?2 and observation is conducted with an air mass factor of 10. Even when the VCD is 2 × 1016 cm?2 and the air mass factor is 4, the relative error of the retrieved VCD is still no less than 3%. If the observation is restricted under the small air mass factor condition (≤ 4), with Kitt Peak Solar spectrum as an extraterrestrial solar radiation, only an atmospheric layer of 2 km thick from ground can be studied, which will make the absorption too weak to be detected by normal instruments. The VCD in winter Tokyo area was observed and analyzed by differential method, which shows a good precision even when the absorption is as low as 3%. The largest average VCD was about 1.3 × 1017 cm-2, and the lowest was about 1.3 × 1016 cm?2. The trend of its variation was almost the same as the ground level observation by Saltzman reagent method. Key words Vertical column density (VCD) - Extraterrestrial solar radiation - NO2 - Atmospheric contamination展开更多
The Quaternary infilling of a circular structure located in Bajada del Diablo,Chubut Province,Argentina has been proposed as a crater strewn field in previous studies.Here we report the finding of about 65 microspheru...The Quaternary infilling of a circular structure located in Bajada del Diablo,Chubut Province,Argentina has been proposed as a crater strewn field in previous studies.Here we report the finding of about 65 microspherules collected in a trench excavated in the center of the structure.The majority of handpicked specimens are single,but some of them exhibit compound forms.The single specimens are spherical with a mean size of 137 nm,whereas the more complex samples show peduncles and drop shapes.Dendritic crystal growth is recognized in the internal structure of some broken microspherules.Preliminary chemical composition from the surface and center of microspherules was determined by energy dispersive spectrometry employing EDS.Quantitative EMPA and XRD analysis indicate that the microspherules are mainly composed of Fe and O with magnetite,Fe0with subordinate wiistite.Following consideration of possible anthropogenic and volcanic origins,these spherulites are ascribed to an extraterrestrial input.An accumulation rate of 47 microspherules per m2/yr is estimated for the studied sediments.This value is two orders of magnitude higher than the reference flux for cosmic dust estimated for the last 1 Ma in the Transantarctic Mountains.The microspherules might have been generated as a byproduct of asteroid entry in the atmosphere.展开更多
The discovery of ubiquitous habitable extrasolar planets,combined with revolutionary advances in instrumentation and observational capabilities,has ushered in a renaissance in the search for extraterrestrial intellige...The discovery of ubiquitous habitable extrasolar planets,combined with revolutionary advances in instrumentation and observational capabilities,has ushered in a renaissance in the search for extraterrestrial intelligence(SETI).Large scale SETI activities are now underway at numerous international facilities.The Five-hundred-meter Aperture Spherical radio Telescope(FAST)is the largest single-aperture radio telescope in the world,and is well positioned to conduct sensitive searches for radio emission indicative of exo-intelligence.SETI is one of the five key science goals specified in the original FAST project plan.A collaboration with the Breakthrough Listen Initiative was initiated in 2016 with a joint statement signed both by Dr.Jun Yan,the then director of National Astronomical Observatories,Chinese Academy of Sciences(NAOC),and Dr.Peter Worden,Chairman of the Breakthrough Prize Foundation.In this paper,we highlight some of the unique features of FAST that will allow for novel SETI observations.We identify and describe three different signal types indicative of a technological source,namely,narrow band,wide-band artificially dispersed and modulated signals.Here,we propose observations with FAST to achieve sensitivities never before explored.For nearby exoplanets,such as TESS targets,FAST will be sensitive to an EIRP of 1.9×1011 W,well within the reach of current human technology.For the Andromeda Galaxy,FAST will be able to detect any Kardashev type II or more advanced civilization there.展开更多
It is possible, the question on the existence of extraterrestrial life will be answered not as a result of its search for in other worlds removed by distances of dozens of parsecs but on the surface of Venus, i.e., of...It is possible, the question on the existence of extraterrestrial life will be answered not as a result of its search for in other worlds removed by distances of dozens of parsecs but on the surface of Venus, i.e., of the nearest planet of the Solar system. The search for “habitable zones” in extrasolar planetary systems is based on the postulate on “normal” physical conditions, i.e., the pressure, temperature, and maybe atmospheric composition similar to those on Earth. But could not such an approach be a kind of “terrestrial chauvinism”? Considering the conditions on Venus as a possible analogue of physical conditions on low-orbiting exoplanets of the “super-Earths” type, a new analysis of Venusian surface panoramas’ details has been made. These images were produced by the VENERA landers in 1975 and 1982. A few relatively large objects were found with size ranging from a decimeter to half meter and with unusual morphology. The objects were observed in some images, but were absent in the other or altered their shape. The article presents the obtained results and analyzes the evidence of reality of these objects.展开更多
文摘“Plasmas” up to a kilometer in size and behaving similarly to multicellular organisms have been filmed on 10 separate NASA space shuttle missions, over 200 miles above Earth within the thermosphere. These self-illuminated “plasmas” are attracted to and may “feed on” electromagnetic radiation. They have different morphologies: 1) cone, 2) cloud, 3) donut, 4) spherical-cylindrical;and have been filmed flying towards and descending from the thermosphere into thunderstorms;congregating by the hundreds and interacting with satellites generating electromagnetic activity;approaching the Space Shuttles. Computerized analysis of flight path trajectories documents these plasmas travel at different velocities from different directions and change their angle of trajectory making 45°, 90°, and 180° shifts and follow each other. They’ve been filmed accelerating, slowing down, stopping, congregating, engaging in “hunter-predatory” behavior and intersecting plasmas leaving a plasma dust trail in their wake. Similar life-like behaviors have been demonstrated by plasmas created experimentally. “Plasmas” may have been photographed in the 1940s by WWII pilots (identified as “Foo fighters”);repeatedly observed and filmed by astronauts and military pilots and classified as Unidentified Aerial—Anomalous Phenomenon. Plasmas are not biological but may represent a form of pre-life that via the incorporation of elements common in space, could result in the synthesis of RNA. Plasmas constitute a fourth state of matter, are attracted to electromagnetic activity, and when observed in the lower atmosphere likely account for many of the UFO-UAP sightings over the centuries.
文摘The history of how Homo sapiens out-survived the Neanderthals is recalled here with the goal of conceiving an edge in our coming competition with a faster, stronger artificial intelligence (AI) who has far greater capacity for information storage. The social and cognitive differences between the two hominid species, Homo sapiens and Homo neanderthalensis, are described. Based on findings from genomics, neuroscience, archaeology, and paleobiology, it appears possible that the capacities of Homo sapiens could outreach those of AIs in some ways. Especially important are human visuospatial, cultural, and, oddly enough, theological capacities, and the interaction of these capacities in group problem-solving. While communication between AIs is fast and can be widespread, the authors ask whether this is the right kind of communication for solving problems of survival. An important question is explored throughout: Is it ethical to withhold from AIs human-like capacities that may become possible to install? Finally, a worrisome question is broached: Is it the best course to create AIs in our own image to safeguard our existence in unknown future interactions with extraterrestrial species, both organic and inorganic?
文摘The speed,capacity,and strength of artificial intelligence units(AIs)could pose a selfinflicted danger to humanity’s control of its own civilization.In this analysis,three biologically-based components of sentience that emerged in the course of human evolution are examined:cultural capacity,moral capacity,and religious capacity.The question is posed as to whether some measure of these capacities can be digitized and installed in AIs and so afford protection from their dominance.Theory on the emergence of moral capacity suggests it is most likely to be amenable to digitization and therefore installation in AIs.If so,transfer of that capacity,in creating commonalities between human and AI,may help to protect humanity from being destroyed.We hypothesize that religious thinking and culturally elaborated theological creativity could,in not being easily transferred,afford even more protection by constructing impenetrable barriers between humans and AIs,along real/counterfactual lines.Difficulties in digitizing and installing the three capacities at the foundation of sentience are examined within current discussions of“superalignment”of superintelligent AIs.Human values articulate differently for the three capacities,with different problems and capacities for supervision of superintelligent AIs.
文摘This paper examines the influence of gravity on the bulk responses of a granular solid. The loading scenarios in this study include confined compression, rod penetration into a granular medium and discharging through an orifice. Similar loading and flow conditions are likely to be encountered in the stress and deformation regimes that regoliths are subjected to in extraterrestrial exploration activities including in situ resource utilisation processes. Both spherical and non-spherical particles were studied using the discrete element method (DEM). Whilst DEM is increasingly used to model granular solids, careful validations of the simulation outcomes are rather rare. Thus in addition to exploring the effect of gravity, this paper also compares DEM simulations with experiments under terrestrial condition to verify whether DEM can produce satisfactory predictions. The terrestrial experiments were conducted with great care and simulated closely using DEM. The key mechanical and geometrical properties for the particles were measured in laboratory tests for use in the DEM simulations. A series of DEM computations were then performed under reduced gravity to simulate these experiments under extraterrestrial environment. It was found that gravity has no noticeable effect on the force transmission in the confined compression case; the loading gradient in the rod penetration is linearly proportional to the gravity; the mass flow rate in silo discharge is proportional to square root of the gravity and the angle of repose increases with reducing gravity. These findings are in agreement with expectation and existing scientific evidence.
基金National Key Technologies R&D Program of China(2013BAC03B05)National High-tech R&D Program of China(2013AA122003)
文摘The Angstrom-Prescott formula is commonly used in climatological calculation methods of solar radiation simulation. Fitting the coefficients is carried out using linear regression and in recent years it has been found that these coefifcients have obvious spatial variability. A common solution is to divide the study area into several subregions and ift the coefifcients one by one. Here, we use ground observation data for sunshine hours and solar radiation from 1961 to 2010. Adopting extraterrestrial radiation as the initial value, Angstrom-Prescott coefifcients are obtained by Geographically Weighted Regression at a national scale. The surfaces of solar radiation are obtained on the basis of the surfaces of sunshine hours interpolated by high accuracy surface modeling and astronomical radiation;results from spatial y nonstationary and error comparison tests show that Angstrom-Prescott coefifcients have signiifcant spatial nonstationarity. Compared to existing research methods, the method presented here achieves a better simulation effect.
文摘Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41771423, 41930102, 41601408 and 41491339)the industry-university-research cooperation project for the social development of Fujian province, China (grant number 2018Y0054)
文摘Solar radiation is often shielded by terrain relief, especially in mountainous areas, before reaching the surface of the Earth. The objective of this paper is to study the spatial structures of the shielded astronomical solar radiation(SASR) and the possible sunshine duration(PSD) over the Loess Plateau. To this end, we chose six test areas representing different landforms over the Loess Plateau and the software package of Matlab was used as the main computing platform. In each test area, 5-m-resolution digital elevation model established from 1:10,000 scale topographic maps was used to compute the corresponding slope, SASR and PSD. Then, we defined the concepts of the slope-mean SASR spectrum and the slope-mean PSD spectrum, and proposed a method to extract them from the computed slope, SASR and PSD over rectangular analysis windows. Using this method, we found both spectrums in a year or in a season for each of the four seasons in the six test areas. Each spectrum was found only when the area of the corresponding rectangular analysis window was greater than the corresponding stable area of the spectrum. The values of the two spectrums decreased when the slope increased.Furthermore, the values of the stable areas of the spectrums in a year or in a season were positively correlated with the variable coefficients of the slope or the profile curvature. The values of the stable areas of the two spectrums in a year or in a season may represent the minimum value of test areas for corresponding future research on the spatial structures of the SASR or PSD. All the findings herein suggest that the spatial structures of the PSD and the SASR are caused by the interactions between solar radiation and terrain relief and that the method for extracting either spectrum is effective for detecting their spatial structures. This study may deepen our understanding of the spatial structure of solar radiation and help us further explore the distribution of solar energy in mountainous regions.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
文摘A selection of evidence, including a carbon isotopic excursion, iridium anomaly, fullerenes (C 60 and C 70 ) with trapped noble gases, microspherules and shocked quartz, is discussed in this paper. All the evidence in hand favors the hypothesis that the PTB event was probably related to an extraterrestrial cause, and the impact would lead to great physical change, including large volcanic eruptions on the earth's surface. The ET markers for the CTB event could be considered only as an example, and cannot be taken as a unique standard of an ET event.
基金This work was granted by National Nature Science Foundation of China (Nos. 49772121, 40172044 and 40672082).
文摘Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There are 1 to 30 grains of cosmic spherules per 2 kg of a sandstone sample taken from the bottom of a coarse sandstone bed of the Changzhougou Formation and 56 grains per 3.69 kg of a rock sample from silicified carbonate rocks of the Dahongyu Formation. The surface textures of cosmic spherules analyzed by means of the secondary electron imagery are identical with those reported from references either domestic or abroad. So far the geo-ages of 1.8 Ga and 1.6 Ga of cosmic spherules from the Changzhougou and Dahongyu formations might be older than those reported in the world. Table 1 gives the electron probe analysis data of cosmic spherules for 30 spherule grains and 44 testing points as follows (%): FeO, 80-95; Cr2O3; 0-9.56; NiO, 0-0.78; CoO, 0-0.46; indicating that the Cr2O3 content is higher and FeO content lower in the Changzhougou Formation than in the Dahongyu Formation. The helium isotopic data of cosmic spherules as well as their host rocks vary greatly between the Changzhougou and the Dahongyu formations as shown in Table 2. The data of cosmic spherules of the Changzhougou Formation vs the Dahongyu Formation are 57.5/1.23 in ^3He/^4He (10^-8); and 55.54/809.60 in ^4He (10^-6cm^3STP/g); those of coarse sandstone of the Changzhougou Formation vs silicified carbonate of the Dahongyu Formation are 3.39/2.59 in ^3He/^4He (10^-8) and 4.56/2.34 in ^3He (10^-6cm^3STP/g). The ratio of analytic data of helium isotopes are different for cosmic spherules and their host rocks; for example, the ^3He/^4He (10^-8) values are 16.96 and 0.48, and the ^4He (10^-6 cm^3STP/g) are 12.18 and 345.98 for the Changzhougou and Dahongyu formations respectively. It was reported that the world's oldest micrometeorites had been found in the Meso-Proterozoic Satakunta Formation, Finland. Howeve
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.
基金the National Key R&D Program of China(2018YFA0702600)the Key Research program of Chinese Academy of Sciences(ZDBS-SSW-JSC007-13)+1 种基金the institute of Geology and Geophysics,Chinese Academy of Sciences(IGGCAS-202101)the National Natural Science Foundation of China(grants no.41890843,41920104009)。
文摘New samples returned by China Chang’e-5(CE-5)mission offer an opportunity for studying the lunar geologic longevity,space weathering,and regolith evolution.The age determination of the CE-5 samples was among the first scientific questions to be answered.However,the precious samples,most in the micrometer size range,challenge many traditional analyses on large single crystals of zircon developed for massive bulk samples.Here,we developed a non-destructive rapid screening of individual zirconium-containing particle for isotope geochronology based on a Micro X-ray fluorescence analysis(μXRF).The selected particles were verified via scanning electron microscopy(SEM),3D X-ray microscopy(XRM),and focused ion beam scanning electron microscopy(FIB-SEM)techniques,which showed that zirconium-bearing minerals with several microns were precisely positioned and readily suitable for site-specific isotopic dating by second ion mass spectrometry(SIMS).Such protocol could be also appli-cable in non-destructively screening other types of particles for different scientific purposes.We there-fore proposed a correlative workflow for comprehensively studying the CE-5 lunar samples from single particles on nanometer to atomic scales.Linking various microscopic and spectromicroscopic instru-ments together,this workflow consists of six steps:(1)single-particle selection with non-destructive μXRF technique,(2)2D/3D morphological and structural characterization with a correlative submicron 3D XRM and nanoscale resolution FIB-SEM imaging methods,(3)SEM analysis of the surface morphology and chemistry of the selected particle,(4)a series of microscopic and microbeam analyses(e.g.,SEM,electron probe microanalysis,and SIMS)on the cross-section of the selected particle to obtain structural,mineralogical,chemical,and isotopic features from the micron to nanometer scale,(5)advanced 2D/3D characterization and site-specific sample preparation of thin foil/tip specimens on a microregion of inter-est in the selected particle with FIB-SEM techniqu
基金partly supported by JSPS KAKENHI Grant Nos. 26800276 (Grant-in-Aid for Young Scientists (B)), 16H04074 (Grant-in-Aid for Scientific Research (B)), 16K13906 (Grant-in-Aid for Challenging Exploratory Research), and 26106001 (Grant-in-Aid for Scientific Research on Innovative Areas)
文摘How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements(N and P) on the Hadean Earth, abiotic synthesis of life's building blocks(amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules(peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of(1) reductive gas phase,(2) alkaline pH,(3) freezing temperature,(4)fresh water,(5) dry/dry-wet cycle,(6) coupling with high energy reactions,(7) heating-cooling cycle in water, and(8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life.
文摘Whether the platinum group elements (PGE) can be taken as the indicators of extraterrestrial materials is a very important and interesting scientific problem. It is discussed on the basis of systematic investigation and study of a great amount of related literature. The following conclusions can be obtained: (ⅰ) extraterrestrial impact event can cause the PGE anomaly; conversely, the PGE anomaly may not represent the existence of extraterrestrial impact event, because the PGE anomaly can be caused by many terrestrial events (e.g. volcanic activity); (ⅱ) the PGE anomaly, especially the global PGE anomaly can inspire us to think it from extraterrestrial event, but it may not be as useful as previously thought as unambiguous identifiers of large extraterrestrial impact event in the earth’s history.
文摘The monthly extraterrestrial solar radiations (ESR) have been simulated separately for all the months of the year. The subtropical location and distribution of mountains and their height determine the spatial distribution and amount of ESR in Pakistan. The mountains, piedmonts, enclosed valleys and plains show distinct diversity of ESR values. The assessment acknowledged that countries like Pakistan with ever increasing demand of energy receive sufficient amount of ESR that could be linked with solar irradiance where development of solar energy has great potential. The simulation was done with the help of ArcGIS based on distributed modeling.
文摘For the measurement of atmospheric NO2 vertical column density (VCD), Kitt Peak Solar Flux Atlas can be substituted as an extraterrestrial solar radiation. Compared with differential analysis method, the Taylor expansion of integrated transfer equation underestimates the VCD. This underestimation is as large as 35% when the amount of NO2 is 1 × 1017 cm?2 and observation is conducted with an air mass factor of 10. Even when the VCD is 2 × 1016 cm?2 and the air mass factor is 4, the relative error of the retrieved VCD is still no less than 3%. If the observation is restricted under the small air mass factor condition (≤ 4), with Kitt Peak Solar spectrum as an extraterrestrial solar radiation, only an atmospheric layer of 2 km thick from ground can be studied, which will make the absorption too weak to be detected by normal instruments. The VCD in winter Tokyo area was observed and analyzed by differential method, which shows a good precision even when the absorption is as low as 3%. The largest average VCD was about 1.3 × 1017 cm-2, and the lowest was about 1.3 × 1016 cm?2. The trend of its variation was almost the same as the ground level observation by Saltzman reagent method. Key words Vertical column density (VCD) - Extraterrestrial solar radiation - NO2 - Atmospheric contamination
基金carried out under Project UBACyT 20020130100146/14X236PIP 00416/11PICT 2013-1950
文摘The Quaternary infilling of a circular structure located in Bajada del Diablo,Chubut Province,Argentina has been proposed as a crater strewn field in previous studies.Here we report the finding of about 65 microspherules collected in a trench excavated in the center of the structure.The majority of handpicked specimens are single,but some of them exhibit compound forms.The single specimens are spherical with a mean size of 137 nm,whereas the more complex samples show peduncles and drop shapes.Dendritic crystal growth is recognized in the internal structure of some broken microspherules.Preliminary chemical composition from the surface and center of microspherules was determined by energy dispersive spectrometry employing EDS.Quantitative EMPA and XRD analysis indicate that the microspherules are mainly composed of Fe and O with magnetite,Fe0with subordinate wiistite.Following consideration of possible anthropogenic and volcanic origins,these spherulites are ascribed to an extraterrestrial input.An accumulation rate of 47 microspherules per m2/yr is estimated for the studied sediments.This value is two orders of magnitude higher than the reference flux for cosmic dust estimated for the last 1 Ma in the Transantarctic Mountains.The microspherules might have been generated as a byproduct of asteroid entry in the atmosphere.
文摘The discovery of ubiquitous habitable extrasolar planets,combined with revolutionary advances in instrumentation and observational capabilities,has ushered in a renaissance in the search for extraterrestrial intelligence(SETI).Large scale SETI activities are now underway at numerous international facilities.The Five-hundred-meter Aperture Spherical radio Telescope(FAST)is the largest single-aperture radio telescope in the world,and is well positioned to conduct sensitive searches for radio emission indicative of exo-intelligence.SETI is one of the five key science goals specified in the original FAST project plan.A collaboration with the Breakthrough Listen Initiative was initiated in 2016 with a joint statement signed both by Dr.Jun Yan,the then director of National Astronomical Observatories,Chinese Academy of Sciences(NAOC),and Dr.Peter Worden,Chairman of the Breakthrough Prize Foundation.In this paper,we highlight some of the unique features of FAST that will allow for novel SETI observations.We identify and describe three different signal types indicative of a technological source,namely,narrow band,wide-band artificially dispersed and modulated signals.Here,we propose observations with FAST to achieve sensitivities never before explored.For nearby exoplanets,such as TESS targets,FAST will be sensitive to an EIRP of 1.9×1011 W,well within the reach of current human technology.For the Andromeda Galaxy,FAST will be able to detect any Kardashev type II or more advanced civilization there.
文摘It is possible, the question on the existence of extraterrestrial life will be answered not as a result of its search for in other worlds removed by distances of dozens of parsecs but on the surface of Venus, i.e., of the nearest planet of the Solar system. The search for “habitable zones” in extrasolar planetary systems is based on the postulate on “normal” physical conditions, i.e., the pressure, temperature, and maybe atmospheric composition similar to those on Earth. But could not such an approach be a kind of “terrestrial chauvinism”? Considering the conditions on Venus as a possible analogue of physical conditions on low-orbiting exoplanets of the “super-Earths” type, a new analysis of Venusian surface panoramas’ details has been made. These images were produced by the VENERA landers in 1975 and 1982. A few relatively large objects were found with size ranging from a decimeter to half meter and with unusual morphology. The objects were observed in some images, but were absent in the other or altered their shape. The article presents the obtained results and analyzes the evidence of reality of these objects.