Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this p...Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this paper, the potential causes of fishery resource exhaustion in the East China Sea are analyzed, including the change in the stoichiometric composition of seawater with regard to the concentrations of N and P, toxic effects of marine pollution, marine habitat destruction, increased seawater temperatures caused by climate warming, ocean acidification, pressure from overfishing, and the spread of marine pathogenic bacteria. It is believed that the factors mentioned above have significant impact on the exhaustion of fishery resources in the East China Sea. However, considering the cumulative, synergistic, and superimposed effects as well as the amplification effects resulting from their interactions, the actual risk of ecological extinction of marine organisms might be even more severe than that previously estimated. Hence, ecosystem management and research focused on a single risk factor or influencing factor is not enough to prevent marine ecosystem degradation and fishery resource exhaustion. A comprehensive, systematic, effective, and ecosystem-based management policy is imperative for healthy and sustainable fishery development in the East China Sea.展开更多
在大型半密闭空间内发生具有不同粒度分布的水雾体系,用喷雾激光粒度仪测试粒度分布规律并采用Van Der Hulst公式计算不同大小水雾粒子对红外辐射的散射效率因子、吸收效率因子和消光效率因子。结果表明:试验条件下水雾粒子的平均直径...在大型半密闭空间内发生具有不同粒度分布的水雾体系,用喷雾激光粒度仪测试粒度分布规律并采用Van Der Hulst公式计算不同大小水雾粒子对红外辐射的散射效率因子、吸收效率因子和消光效率因子。结果表明:试验条件下水雾粒子的平均直径在5-65μm范围内。计算结果显示:水雾粒子对3-5、8~14μm红外辐射的消光作用主要取决于散射效应而非吸收效应。当水雾粒子的直径大于等于红外辐射的波长时,水雾体系对该波长红外辐射能够产生较强的消光效果。综合分析水雾体系的稳定性和消光特性,直径在3~30μm之间的水雾粒子对3~5、8~14μm红外辐射的衰减效果更为明显。展开更多
基金supported by the Public Science and Technology Research Funds Projects for Ocean(Grant Nos.201505003201505025)
文摘Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this paper, the potential causes of fishery resource exhaustion in the East China Sea are analyzed, including the change in the stoichiometric composition of seawater with regard to the concentrations of N and P, toxic effects of marine pollution, marine habitat destruction, increased seawater temperatures caused by climate warming, ocean acidification, pressure from overfishing, and the spread of marine pathogenic bacteria. It is believed that the factors mentioned above have significant impact on the exhaustion of fishery resources in the East China Sea. However, considering the cumulative, synergistic, and superimposed effects as well as the amplification effects resulting from their interactions, the actual risk of ecological extinction of marine organisms might be even more severe than that previously estimated. Hence, ecosystem management and research focused on a single risk factor or influencing factor is not enough to prevent marine ecosystem degradation and fishery resource exhaustion. A comprehensive, systematic, effective, and ecosystem-based management policy is imperative for healthy and sustainable fishery development in the East China Sea.
文摘在大型半密闭空间内发生具有不同粒度分布的水雾体系,用喷雾激光粒度仪测试粒度分布规律并采用Van Der Hulst公式计算不同大小水雾粒子对红外辐射的散射效率因子、吸收效率因子和消光效率因子。结果表明:试验条件下水雾粒子的平均直径在5-65μm范围内。计算结果显示:水雾粒子对3-5、8~14μm红外辐射的消光作用主要取决于散射效应而非吸收效应。当水雾粒子的直径大于等于红外辐射的波长时,水雾体系对该波长红外辐射能够产生较强的消光效果。综合分析水雾体系的稳定性和消光特性,直径在3~30μm之间的水雾粒子对3~5、8~14μm红外辐射的衰减效果更为明显。