We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio th...We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .展开更多
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power...The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱ and Ⅲ The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.展开更多
A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, ...A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.展开更多
We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by on...We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.展开更多
By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling ef...By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling efficiency is improved when the seed diode laser is optically locked to a resonant frequency of a confocal Fabry-Perot (F-P) cavity. This phenomenon can be attributed to the narrowing of the 1.56 μm laser linewidth and explained by our presented theoretical model. The experimental results are found to be in good agreement with the theoretical predictions.展开更多
High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of ...High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.展开更多
Numerical simulations show that proper fundamental mode-locking repetition range of hybrid soliton pulse source where transform-limited pulses are obtained is extremely increased with the use of linearly chirped tanh ...Numerical simulations show that proper fundamental mode-locking repetition range of hybrid soliton pulse source where transform-limited pulses are obtained is extremely increased with the use of linearly chirped tanh apodized fibre Bragg grating. Near transform-limited pulses around a system operating frequency of 2.5 GHz. are generated over a frequency range of 1.6 GHz (1.9-3.4 GHz)展开更多
The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variation...The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variations are explained with laser theory. The trough in the intensity variation corresponds to the position of the prism when the output light beam propagates perpendicularly to the prism. Based on the trough a new method for rotating the prism and reading out the step numbers is proposed, by which the angle 0° in the system need not to be calibrated. It is proven by experiment that the new method would improve the accuracy of the refractive index up to ±0.00001 and thickness to ±1 nm.展开更多
The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed. Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensor...The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed. Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensors has been improved by 10 times. The role of the each reflector has been discussed in detail.展开更多
External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ...External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltagecontrolled oscillator contained in a phase detector,whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL.The output frequency of the stabilized ECDL can be shifted at a short characteristic time of∼150µs within a range of∼620 MHz.The wide and fast-frequency tuning achieved by our method is compared with other previous works.We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6µK.展开更多
The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related t...The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related to the maximum and the minimum threshold carrier densities, are deduced from the threshold condition. We define a ratio of the CTR to the MTR. This ratio is only determined by the reflectivities of the external and internal facets of the ECLD. The analysis shows that there is an appropriate combination of the external and internal-cavity reflectivities to obtain a given CTR in the design of an ECLD.展开更多
文摘We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by Key Project of the National Natural Science Foundation of China under Grant No 60438010.
文摘The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱ and Ⅲ The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.
基金This work was supported by the National Key R&D Program of China(No.2020YFC2201300)the National Natural Science Foundation of China(No.11903041)。
文摘A hertz-linewidth ultra-stable laser(USL), which will be used to detect the clock transition line, in a strontium optical clock will be launched into the China Space Station(CSS) in late 2022. As the core of the USL, an interference-filter-based externalcavity diode laser(IF-ECDL) was developed. The IF-ECDL has a compact, stable, and environmentally insensitive design.Performances of the IF-ECDL are presented. The developed IF-ECDL can pass the aerospace environmental tests, indicating that the IF-ECDL can be suitable for space missions in the CSS.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174098 and 11574107the SelfDetermined Research Funds of Central China Normal University under Grant No CCNU15A02034
文摘We report an external cavity quantum cascade laser (EC-QCL) operating near 6.9μm using the Littman Metcalf configuration. The EC-QCL works in a pulsed mode and can be tuned continuously from 1340 to 1640cm^-1 by only tilting the tuning mirror. The fine tuning ability of the EC-QCL is demonstrated by measuring the absorption spectrum of water in the ambient air with a lock-in amplifier.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60527003,60608011 and 60878003)the State Key Program for Basic Research of China (Grant No 2007CB316501)
文摘By using an external-cavity frequency-doubling master oscillator fiber power amplifier (MOPA), a 700 mW continuous-wave single-frequency laser source at 780 nm is produced. It is shown that the frequency doubling efficiency is improved when the seed diode laser is optically locked to a resonant frequency of a confocal Fabry-Perot (F-P) cavity. This phenomenon can be attributed to the narrowing of the 1.56 μm laser linewidth and explained by our presented theoretical model. The experimental results are found to be in good agreement with the theoretical predictions.
基金Project supported by the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2015jcyj BX0098)the National Natural Science Foundation of China(Grant No.61575011)the Foundation for the Creative Research Groups of Higher Education of Chongqing(Grant No.CXTDX201601016)
文摘High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.
文摘Numerical simulations show that proper fundamental mode-locking repetition range of hybrid soliton pulse source where transform-limited pulses are obtained is extremely increased with the use of linearly chirped tanh apodized fibre Bragg grating. Near transform-limited pulses around a system operating frequency of 2.5 GHz. are generated over a frequency range of 1.6 GHz (1.9-3.4 GHz)
文摘The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variations are explained with laser theory. The trough in the intensity variation corresponds to the position of the prism when the output light beam propagates perpendicularly to the prism. Based on the trough a new method for rotating the prism and reading out the step numbers is proposed, by which the angle 0° in the system need not to be calibrated. It is proven by experiment that the new method would improve the accuracy of the refractive index up to ±0.00001 and thickness to ±1 nm.
基金Supported by the National Natural Science Foundation of China under Grant No 60438010.
文摘The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed. Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensors has been improved by 10 times. The role of the each reflector has been discussed in detail.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,and 61705123)+4 种基金PCSIRT(No.IRT17R70)111 Project(Grant No.D18001)the Shanxi 1331 KSCthe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.
文摘External-cavity diode laser(ECDL)has important applications in many fundamental and applied researches.Here we report a method to fast and widely tune the frequency of a stabilized ECDL.The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltagecontrolled oscillator contained in a phase detector,whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL.The output frequency of the stabilized ECDL can be shifted at a short characteristic time of∼150µs within a range of∼620 MHz.The wide and fast-frequency tuning achieved by our method is compared with other previous works.We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6µK.
基金The Foundation of National Railways Ministry , National Studying
文摘The wavelength tuning ranges of a grating external-cavity laser diode (ECLD) have been studied by the equivalent cavity method. The maximum tuning range (MTR) and the continuous tuning range (CTR), which are related to the maximum and the minimum threshold carrier densities, are deduced from the threshold condition. We define a ratio of the CTR to the MTR. This ratio is only determined by the reflectivities of the external and internal facets of the ECLD. The analysis shows that there is an appropriate combination of the external and internal-cavity reflectivities to obtain a given CTR in the design of an ECLD.