The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases,...The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling engine efficiency when the heat is obtained through external combustion without pre-heating the air, is presented and results for various fuels tabulated. The results show that petrol and diesel, internal combustion engines (Otto cycle) have a higher ideal efficiency than the Stirling engine. When comparing thermoacoustic engines heated by wood, efficiency should not be quoted as a percentage of the Carnot efficiency, but against a figure 48% lower than Carnot. The effect is not seen with electrically heated rigs, solar or nuclear fission heated engines.展开更多
It has been made a proposal of new ideal cycle for power plants which is working by a turbine gas, for both closed and open systems. It has been designed a special device for adding heat at constant volume. The aim of...It has been made a proposal of new ideal cycle for power plants which is working by a turbine gas, for both closed and open systems. It has been designed a special device for adding heat at constant volume. The aim of special device is to decrease the amount of added heat for the new cycle. We have made a comparison between the simple gas turbine cycle & the new cycle. The results has been shown, that the efficiency of new cycle is greater than the simple cycle of gas turbine.展开更多
It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat b...It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.展开更多
文摘The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling engine efficiency when the heat is obtained through external combustion without pre-heating the air, is presented and results for various fuels tabulated. The results show that petrol and diesel, internal combustion engines (Otto cycle) have a higher ideal efficiency than the Stirling engine. When comparing thermoacoustic engines heated by wood, efficiency should not be quoted as a percentage of the Carnot efficiency, but against a figure 48% lower than Carnot. The effect is not seen with electrically heated rigs, solar or nuclear fission heated engines.
文摘It has been made a proposal of new ideal cycle for power plants which is working by a turbine gas, for both closed and open systems. It has been designed a special device for adding heat at constant volume. The aim of special device is to decrease the amount of added heat for the new cycle. We have made a comparison between the simple gas turbine cycle & the new cycle. The results has been shown, that the efficiency of new cycle is greater than the simple cycle of gas turbine.
文摘It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.