Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound sourc...Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.展开更多
为了对车外噪声进行预测,提出一种基于统计能量分析(Statistical energy analysis,SEA)原理分析预测车外噪声的新方法,建立包含47个车身结构和车外声腔子系统的车外噪声分析预测SEA模型,采用理论计算方法确定各形状规则子系统的模态密...为了对车外噪声进行预测,提出一种基于统计能量分析(Statistical energy analysis,SEA)原理分析预测车外噪声的新方法,建立包含47个车身结构和车外声腔子系统的车外噪声分析预测SEA模型,采用理论计算方法确定各形状规则子系统的模态密度与内损耗因子,对车门等复杂车身结构子系统的模态密度与内损耗因子进行试验测试,计算线连接、面连接子系统间的耦合损耗因子。确定所研究车型55km/h的车速作为车外噪声预测的计算工况,通过试验测量动力总成悬置振动和路面随机输入对车身的激励,并在半消声室内对发动机舱辐射的声激励进行测试,建立被试轿车的计算流体动力学(Computational fluid dynamics,CFD)模型,对车外噪声预测工况下车身外表面的风压激励进行仿真计算。利用参数化及施加激励后的车外噪声SEA预测模型进行车外噪声的分析预测,并与试验结果进行对比,结果表明预测结果与试验结果间的差值小于2dB(A),相对误差小于2.7%,从而验证了所提出的车外噪声预测方法的有效性,该方法能够满足工程上在汽车产品开发设计阶段对车外噪声分析预测的要求。进一步分析不同截面形状的预测声腔及声腔厚度变化对车外噪声预测结果的影响。结果表明,随着预测声腔厚度的增大,声压级逐渐减小,不同截面形状的预测声腔对车外噪声预测结果影响较小。展开更多
基金Supported by National Key R&D Program of China(Grant No.2016YFE0205200)National Natural Science Foundation of China(Grant No.U1834201)
文摘Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.
文摘为了对车外噪声进行预测,提出一种基于统计能量分析(Statistical energy analysis,SEA)原理分析预测车外噪声的新方法,建立包含47个车身结构和车外声腔子系统的车外噪声分析预测SEA模型,采用理论计算方法确定各形状规则子系统的模态密度与内损耗因子,对车门等复杂车身结构子系统的模态密度与内损耗因子进行试验测试,计算线连接、面连接子系统间的耦合损耗因子。确定所研究车型55km/h的车速作为车外噪声预测的计算工况,通过试验测量动力总成悬置振动和路面随机输入对车身的激励,并在半消声室内对发动机舱辐射的声激励进行测试,建立被试轿车的计算流体动力学(Computational fluid dynamics,CFD)模型,对车外噪声预测工况下车身外表面的风压激励进行仿真计算。利用参数化及施加激励后的车外噪声SEA预测模型进行车外噪声的分析预测,并与试验结果进行对比,结果表明预测结果与试验结果间的差值小于2dB(A),相对误差小于2.7%,从而验证了所提出的车外噪声预测方法的有效性,该方法能够满足工程上在汽车产品开发设计阶段对车外噪声分析预测的要求。进一步分析不同截面形状的预测声腔及声腔厚度变化对车外噪声预测结果的影响。结果表明,随着预测声腔厚度的增大,声压级逐渐减小,不同截面形状的预测声腔对车外噪声预测结果影响较小。