期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于扩展记忆粒子群优化支持向量机的汽轮机故障诊断 被引量:2
1
作者 范汉林 《电气开关》 2023年第3期68-71,共4页
为了提高汽轮机故障诊断正确率,提出了一种基于EMPSO-SVM的汽轮机故障诊断方法。采用扩展记忆系数对PSO算法进行改进,以提高PSO算法的优化性能,采用扩展记忆粒子群算法对支持向量机进行优化,建立了基于EMPSO-SVM的汽轮机故障诊断模型。... 为了提高汽轮机故障诊断正确率,提出了一种基于EMPSO-SVM的汽轮机故障诊断方法。采用扩展记忆系数对PSO算法进行改进,以提高PSO算法的优化性能,采用扩展记忆粒子群算法对支持向量机进行优化,建立了基于EMPSO-SVM的汽轮机故障诊断模型。采用实际算例进行仿真分析,结果表明,EMPSO-SVM模型诊断结果的正确率高达95%,相比PSO-SVM模型正确率提高了7.5%,验证了模型的正确性和实用性。 展开更多
关键词 汽轮机 故障诊断 扩展记忆粒子群 支持向量机
下载PDF
基于PSOEM和神经网络的光伏电站功率预测 被引量:13
2
作者 朱旭坤 姚李孝 杨国清 《电网与清洁能源》 北大核心 2021年第7期115-120,135,共7页
分析光伏发电输出功率预测的影响因素,确定了基于BP神经网络的功率预测模型,针对BP神经网络本身易陷入局部极值、收敛速度慢等问题,采用粒子群优化算法(PSO)和带扩展记忆粒子群优化算法(PSOEM)这2种群智能算法来优化BP神经网络的初始值... 分析光伏发电输出功率预测的影响因素,确定了基于BP神经网络的功率预测模型,针对BP神经网络本身易陷入局部极值、收敛速度慢等问题,采用粒子群优化算法(PSO)和带扩展记忆粒子群优化算法(PSOEM)这2种群智能算法来优化BP神经网络的初始值和阈值,分别建立了基于PSOBP神经网络和基于PSOEM-BP神经网络的光伏电站输出功率预测模型。根据某光伏电站2月1日—6月30日的光伏发电历史数据,利用所提3种模型对光伏发电系统进行了功率预测。误差对比结果表明,基于PSOEM-BP神经网络的功率预测精度明显高于基于PSO-BP神经网络的功率预测精度,故采用PSOEM优化后BP神经网络模型进行光伏功率预测,具有一定的理论和实用价值。 展开更多
关键词 BP神经网络 带扩展记忆的粒子群 粒子群 功率预测
下载PDF
基于扩展记忆粒子群-支持向量回归的短期电力负荷预测 被引量:14
3
作者 段其昌 曾勇 +2 位作者 黄大伟 段盼 刘顿 《电力系统保护与控制》 EI CSCD 北大核心 2012年第2期40-44,共5页
为了快速准确高效地预测短期电力负荷,提出了一种带扩展记忆的粒子群优化技术(PSOEM)和支持向量回归(SVR)相结合,以历史负荷数据、气象因素等作为输入的基于PSOEM-SVR的短期电力负荷预测方法。PSOEM比传统PSO收敛速度更快精度更高具有... 为了快速准确高效地预测短期电力负荷,提出了一种带扩展记忆的粒子群优化技术(PSOEM)和支持向量回归(SVR)相结合,以历史负荷数据、气象因素等作为输入的基于PSOEM-SVR的短期电力负荷预测方法。PSOEM比传统PSO收敛速度更快精度更高具有更强的寻优能力,用它来优化组合核函数SVR参数,减少了SVR参数设置的盲目低效性,获得较优的PSOEM-SVR预测模型。该模型的实例仿真预测结果表明该方法比BP神经网络具有更好的准确性和稳定性,平均绝对误差控制在1%以内。 展开更多
关键词 扩展记忆 粒子群优化 支持向量回归 短期负荷预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部