运用有限系统密度矩阵重整化群算法(FS-DMRG),研究拓展Bose-Hubbard模型(即在标准BoseHubbard模型的基础上加入最近邻格点间的粒子相互排斥作用V)发生相变的特征。通过计算系统的局域粒子数密度、单粒子能隙以及压缩系数,分析了系统在...运用有限系统密度矩阵重整化群算法(FS-DMRG),研究拓展Bose-Hubbard模型(即在标准BoseHubbard模型的基础上加入最近邻格点间的粒子相互排斥作用V)发生相变的特征。通过计算系统的局域粒子数密度、单粒子能隙以及压缩系数,分析了系统在不同状态下的特征,得到了不同于标准Bose-Hubbard模型的新量子态——Charge Density Wave(CDW)态。通过分析产生特殊粒子分布方式的原因及其物理性质,得出了发生相变的临界条件。展开更多
We study systematically an extended Bose-Hubbard model on the triangular lattice by means of a meanfield method based on the Gutzwiller ansatz. Pair hopping terms are explicitly included and a three-body constraint is...We study systematically an extended Bose-Hubbard model on the triangular lattice by means of a meanfield method based on the Gutzwiller ansatz. Pair hopping terms are explicitly included and a three-body constraint is applied. The zero-temperature phase diagram and a variety of quantum phase transitions are investigated in great detail. In particular, we show the existence and the stability of the pair supersolid phase.展开更多
文摘运用有限系统密度矩阵重整化群算法(FS-DMRG),研究拓展Bose-Hubbard模型(即在标准BoseHubbard模型的基础上加入最近邻格点间的粒子相互排斥作用V)发生相变的特征。通过计算系统的局域粒子数密度、单粒子能隙以及压缩系数,分析了系统在不同状态下的特征,得到了不同于标准Bose-Hubbard模型的新量子态——Charge Density Wave(CDW)态。通过分析产生特殊粒子分布方式的原因及其物理性质,得出了发生相变的临界条件。
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175018 and 11247251)
文摘We study systematically an extended Bose-Hubbard model on the triangular lattice by means of a meanfield method based on the Gutzwiller ansatz. Pair hopping terms are explicitly included and a three-body constraint is applied. The zero-temperature phase diagram and a variety of quantum phase transitions are investigated in great detail. In particular, we show the existence and the stability of the pair supersolid phase.