AIM:To investigate the effect of in vivo environment on gene expression in Helicobacter pylori(H.pylori) as it relates to its survival in the host.METHODS:In vivo expression technology(IVET) systems are used to identi...AIM:To investigate the effect of in vivo environment on gene expression in Helicobacter pylori(H.pylori) as it relates to its survival in the host.METHODS:In vivo expression technology(IVET) systems are used to identify microbial virulence genes.We modified the IVET-transcriptional fusion vector,pIVET8,which uses antibiotic resistance as the basis for selection of candidate genes in host tissues to develop two unique IVET-promoter-screening vectors,pIVET11 and pIVET12.Our novel IVET systems were developed by the fusion of random Sau3A DNA fragments of H.pylori and a tandem-reporter system of chloramphenicol acetyltransferase and beta-galactosidase.Additionally,each vector contains a kanamycin resistance gene.We used a mouse macrophage cell line,RAW 264.7 and mice,as selective media to identify specific genes that H.pylori expresses in vivo.Gene expression studies were conducted by infecting RAW 264.7 cells with H.pylori.This was followed by real time polymerase chain reaction(PCR) analysis to determine the relative expression levels of in vivo induced genes.RESULTS:In this study,we have identified 31 in vivo induced(ivi) genes in the initial screens.These 31 genes belong to several functional gene families,including several well-known virulence factors that are expressed by the bacterium in infected mouse stomachs.Virulence factors,vacA and cagA,were found in this screen and are known to play important roles in H.pylori infection,colonization and pathogenesis.Their detection validates the efficacy of these screening systems.Some of the identified ivi genes have already been implicated to play an important role in the pathogenesis of H.pylori and other bacterial pathogens such as Escherichia coli and Vibrio cholerae.Transcription profiles of allivi genes were confirmed by real time PCR analysis of H.pylori RNA isolated from H.pylori infected RAW 264.7 macrophages.We compared the expression profile of H.pylori and RAW 264.7 coculture with that of H.pylori only.Some genes such as cag A,vac A,lpx C,mur I,tlp C,trx B,展开更多
An in vivo expression technology (IVET) was applied to screen s.flexneri 2a genes induced after invasion of epithelial cells, and virulence-related genes were further identified by mutational analysis. Thirteen intrac...An in vivo expression technology (IVET) was applied to screen s.flexneri 2a genes induced after invasion of epithelial cells, and virulence-related genes were further identified by mutational analysis. Thirteen intracellular induced genes were identified with a HeLa cell infection model. Of these, two were identified as alkylation-related genes; one was related to metabolism; one encoded a transcriptional regulator; three were identified as insertion elements; three ap- peared to be antisense to genes involved in the transmethylation,biosyntheseis, and phos- photransferase system;and three were predicted to encode polypeptides with unknown functions. Intracellular survival assavs showed that the mutants of alkA,citC and wcaJ genes had lower capability of intracellular replication or survival than the the wild-type strain.The results indicated that alkA, citC and wcaJ genes could take part in the intracellular survival or replication of S. flexneri 2a and the capability of intracellular survival or replication could be one of the major virulence elements. However, the yaiC mutant was able to survive in the murine infection assay but almost not in HeLa cell infection assay. Very possibly, yaiC gene was involved in the other mechanism of S. flexneri virulence. This study might lead to a better understanding of the intra- cellular survival or proliferation process of S. flexneri 2a and perhaps provide insights into the pathogenicity of this pathogen.展开更多
Agrobacterium species are routinely employed for plant genetic modification due to the relatively simple procedures, cost-competitiveness, low copy num- ber, independence to vector DNAs, and targeted integration into ...Agrobacterium species are routinely employed for plant genetic modification due to the relatively simple procedures, cost-competitiveness, low copy num- ber, independence to vector DNAs, and targeted integration into transcriptionally active regions of plant chromosomes with defined T-DNA. However, to date, there are still a great number of plant species reluctant to Agrobacterium-mediated transformation. Evidence suggests that the infection capability of Agrobacterium is deter- mined by virulence (vir) genes of Ti plasmid outside ofA. tumefaciens chromosome. Among all v/r genes, virA and virG are constitutively expressed, while the ex- pression of other vir genes is induced by phenolic compounds. In addition, carbohydrates can enhance vir induction mediated by phenolic compounds, while low phosphate and acidic pH conditions may also enhance the induction of vir genes. To improve Agrobacterium-mediated transformation efficiency for potential applica- tions in research and industry, molecular mechanisms of vir induction by factors such as phenolic compounds, carbohydrates, low phosphate, acidic pH and incuba- tion temperature are discussed in this review.展开更多
基金Supported by Intramural Research Program of the National Institutes of Health,National Institute of Diabetes and Digestive and Kidney DiseaseThe Division of Intramural Research of the National Institute of Allergy and Infectious DiseasesAn Inter-Agency Agreement (Y3-DK-3521-07) with the National Institute on Minority Health and Health Disparities
文摘AIM:To investigate the effect of in vivo environment on gene expression in Helicobacter pylori(H.pylori) as it relates to its survival in the host.METHODS:In vivo expression technology(IVET) systems are used to identify microbial virulence genes.We modified the IVET-transcriptional fusion vector,pIVET8,which uses antibiotic resistance as the basis for selection of candidate genes in host tissues to develop two unique IVET-promoter-screening vectors,pIVET11 and pIVET12.Our novel IVET systems were developed by the fusion of random Sau3A DNA fragments of H.pylori and a tandem-reporter system of chloramphenicol acetyltransferase and beta-galactosidase.Additionally,each vector contains a kanamycin resistance gene.We used a mouse macrophage cell line,RAW 264.7 and mice,as selective media to identify specific genes that H.pylori expresses in vivo.Gene expression studies were conducted by infecting RAW 264.7 cells with H.pylori.This was followed by real time polymerase chain reaction(PCR) analysis to determine the relative expression levels of in vivo induced genes.RESULTS:In this study,we have identified 31 in vivo induced(ivi) genes in the initial screens.These 31 genes belong to several functional gene families,including several well-known virulence factors that are expressed by the bacterium in infected mouse stomachs.Virulence factors,vacA and cagA,were found in this screen and are known to play important roles in H.pylori infection,colonization and pathogenesis.Their detection validates the efficacy of these screening systems.Some of the identified ivi genes have already been implicated to play an important role in the pathogenesis of H.pylori and other bacterial pathogens such as Escherichia coli and Vibrio cholerae.Transcription profiles of allivi genes were confirmed by real time PCR analysis of H.pylori RNA isolated from H.pylori infected RAW 264.7 macrophages.We compared the expression profile of H.pylori and RAW 264.7 coculture with that of H.pylori only.Some genes such as cag A,vac A,lpx C,mur I,tlp C,trx B,
文摘An in vivo expression technology (IVET) was applied to screen s.flexneri 2a genes induced after invasion of epithelial cells, and virulence-related genes were further identified by mutational analysis. Thirteen intracellular induced genes were identified with a HeLa cell infection model. Of these, two were identified as alkylation-related genes; one was related to metabolism; one encoded a transcriptional regulator; three were identified as insertion elements; three ap- peared to be antisense to genes involved in the transmethylation,biosyntheseis, and phos- photransferase system;and three were predicted to encode polypeptides with unknown functions. Intracellular survival assavs showed that the mutants of alkA,citC and wcaJ genes had lower capability of intracellular replication or survival than the the wild-type strain.The results indicated that alkA, citC and wcaJ genes could take part in the intracellular survival or replication of S. flexneri 2a and the capability of intracellular survival or replication could be one of the major virulence elements. However, the yaiC mutant was able to survive in the murine infection assay but almost not in HeLa cell infection assay. Very possibly, yaiC gene was involved in the other mechanism of S. flexneri virulence. This study might lead to a better understanding of the intra- cellular survival or proliferation process of S. flexneri 2a and perhaps provide insights into the pathogenicity of this pathogen.
基金Supported by the Fundamental Research Funds for Rubber Research Institute,CATAS (grant no.1630022011014)Key Science and Technology Project of Hainan Province(90107 )Natural Science Foundation of Hainan Province(312026)
文摘Agrobacterium species are routinely employed for plant genetic modification due to the relatively simple procedures, cost-competitiveness, low copy num- ber, independence to vector DNAs, and targeted integration into transcriptionally active regions of plant chromosomes with defined T-DNA. However, to date, there are still a great number of plant species reluctant to Agrobacterium-mediated transformation. Evidence suggests that the infection capability of Agrobacterium is deter- mined by virulence (vir) genes of Ti plasmid outside ofA. tumefaciens chromosome. Among all v/r genes, virA and virG are constitutively expressed, while the ex- pression of other vir genes is induced by phenolic compounds. In addition, carbohydrates can enhance vir induction mediated by phenolic compounds, while low phosphate and acidic pH conditions may also enhance the induction of vir genes. To improve Agrobacterium-mediated transformation efficiency for potential applica- tions in research and industry, molecular mechanisms of vir induction by factors such as phenolic compounds, carbohydrates, low phosphate, acidic pH and incuba- tion temperature are discussed in this review.
文摘探讨不同盐应激水平对大肠杆菌O157:H7存活和毒力基因表达的影响,并分析两者之间的相关性,选取本实验室收集的3株产毒大肠杆菌O157:H7菌株(CICC21530、95和109),于不同NaCl添加量(0、6、12、18 g/100 mL)胰蛋白胨大豆肉汤中应激不同时间,进行细菌培养计数及实时聚合酶链反应检测毒力基因表达情况。结果显示,盐应激显著抑制了3株大肠杆菌O157:H7的存活(P<0.05),抑制效应存在菌株差异,菌株CICC21530 NaCl添加量越高抑制越明显,而菌株95和109则呈现波动性变化。大肠杆菌O157:H7毒力基因表达的变化也与菌株、NaCl添加量有关。较高NaCl添加量时,3株菌存活数显著降低的同时,毒力基因表达量却显著增加(P<0.05),其中菌株CICC21530和菌株95的18 g/100 mL NaCl处理组毒力基因表达量最高,菌株109的12 g/100 mL NaCl处理组毒力基因表达量最高。结果表明盐应激时大肠杆菌O157:H7存活与毒力基因表达的变化不完全一致,存活菌数下降的同时,毒力却会增强,提示在实际含盐食品风险评估中,不仅要关注存活菌量,还需重视残存菌的毒力水平,从而更科学全面地评估大肠杆菌O157:H7的安全风险。