An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite nu...An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.展开更多
Fermat’s last theorem, had the statement that there are no natural numbers A, B, and C such that A<sup>n</sup> + B<sup>n</sup> = C<sup>n</sup>, in which n is a natural number great...Fermat’s last theorem, had the statement that there are no natural numbers A, B, and C such that A<sup>n</sup> + B<sup>n</sup> = C<sup>n</sup>, in which n is a natural number greater than 2. We have shown that any product of two odd numbers can generate Fermat or Pythagoras triple (A, B, C) following n = 2 and also it is applicable A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup> + D<sup>2</sup> + so on =A<sub>n</sub><sup>2 </sup>where all are natural numbers.展开更多
文摘An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.
文摘Fermat’s last theorem, had the statement that there are no natural numbers A, B, and C such that A<sup>n</sup> + B<sup>n</sup> = C<sup>n</sup>, in which n is a natural number greater than 2. We have shown that any product of two odd numbers can generate Fermat or Pythagoras triple (A, B, C) following n = 2 and also it is applicable A<sup>2</sup> + B<sup>2</sup> + C<sup>2</sup> + D<sup>2</sup> + so on =A<sub>n</sub><sup>2 </sup>where all are natural numbers.