This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms...This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bezier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit representation of the optimal degree-reduced surfaces and the approximating error in both boundary curve constraints and corner constraints. But it has to solve the inversion of a matrix whose degree is related with the original surface. The second algorithm entails no matrix inversion to bring about computational instability, gives stable degree-reduced surfaces quickly, and presents the error bound. In the end, the paper proves the efficiency of the two algorithms through examples and error analysis.展开更多
Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is s...Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.展开更多
In this paper, the author constructs a class of explicit schemes, spanning two time levels, forthe initial--boundary-value problems of generalized nonlinear Schrodinger systems, and proves theconvergence of these sch... In this paper, the author constructs a class of explicit schemes, spanning two time levels, forthe initial--boundary-value problems of generalized nonlinear Schrodinger systems, and proves theconvergence of these schemes with a series of prior estimates. For a single Schrodinger equation, theschemes are identical with those of the article [1].展开更多
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A...The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.展开更多
基金Supported by the National Natural Science Foundation of China (6087311160933007)
文摘This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bezier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit representation of the optimal degree-reduced surfaces and the approximating error in both boundary curve constraints and corner constraints. But it has to solve the inversion of a matrix whose degree is related with the original surface. The second algorithm entails no matrix inversion to bring about computational instability, gives stable degree-reduced surfaces quickly, and presents the error bound. In the end, the paper proves the efficiency of the two algorithms through examples and error analysis.
基金National Natural Science Foundation of China under Grant Nos.52108458 and U1839201China National Postdoctoral Program of Innovative Talents under Grant No.BX20200192+1 种基金Shuimu Tsinghua Scholar Program under Grant No.2020SM005National Key Research and Development Program of China under Grant No.2018YFC1504305。
文摘Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.
文摘 In this paper, the author constructs a class of explicit schemes, spanning two time levels, forthe initial--boundary-value problems of generalized nonlinear Schrodinger systems, and proves theconvergence of these schemes with a series of prior estimates. For a single Schrodinger equation, theschemes are identical with those of the article [1].
文摘The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.