Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Sh...Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Shilnikov chaos in continuous-time systems.Applied Mathematics and Mechanics(English Edition),33(3),1-4(2012)).It makes the main conclusion of the paper incorrect,that is to say,the non-existence of Shilnikov chaos in the continuous-time systems considered cannot be ensured.Furthermore,a counter-example shows that Theorem 1 in the paper is incorrect.展开更多
A method is presented to seek for coexisting periodic orbits which may be stable or unstable in piecewise-linear vibro-impacting systems. The conditions for coexistence of single impact periodic orbits are derived, an...A method is presented to seek for coexisting periodic orbits which may be stable or unstable in piecewise-linear vibro-impacting systems. The conditions for coexistence of single impact periodic orbits are derived, and in particular, it is investigated in details how to assure that no other impacts will happen in an evolution period of a single impact periodic motion. Furthermore, some criteria for nonexistence of single impact periodic orbits with specific periods are also established. Finally, the stability of coexisting periodic orbits is discussed, and the corresponding computation formula is given. Examples of numerical simulation are in good agreement with the theoretic analysis.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11102156)the Northwestern Polytechnical University Foundation for Fundamental Research
文摘Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Shilnikov chaos in continuous-time systems.Applied Mathematics and Mechanics(English Edition),33(3),1-4(2012)).It makes the main conclusion of the paper incorrect,that is to say,the non-existence of Shilnikov chaos in the continuous-time systems considered cannot be ensured.Furthermore,a counter-example shows that Theorem 1 in the paper is incorrect.
文摘A method is presented to seek for coexisting periodic orbits which may be stable or unstable in piecewise-linear vibro-impacting systems. The conditions for coexistence of single impact periodic orbits are derived, and in particular, it is investigated in details how to assure that no other impacts will happen in an evolution period of a single impact periodic motion. Furthermore, some criteria for nonexistence of single impact periodic orbits with specific periods are also established. Finally, the stability of coexisting periodic orbits is discussed, and the corresponding computation formula is given. Examples of numerical simulation are in good agreement with the theoretic analysis.