For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict...For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict the trend of the ex-change rate Euro/USD up to three days ahead of last data available. The variable of output of the ANN designed is then the daily exchange rate Euro/Dollar and the frequency of data collection of variables of input and the output is daily. By the analysis of the data it is possible to conclude that the ANN model developed can largely predict the trend to three days of exchange rate Euro/USD.展开更多
汇率预测非常困难,其波动具有时变性、随机性和模糊性等统计特征.现存文献中各种方法和模型的预测效果受很多因素影响,其预测力都不及随机游走模型,这就是汇率预测领域所谓的"米斯和罗格夫之谜(The Meese and Rogoff puzzle)"...汇率预测非常困难,其波动具有时变性、随机性和模糊性等统计特征.现存文献中各种方法和模型的预测效果受很多因素影响,其预测力都不及随机游走模型,这就是汇率预测领域所谓的"米斯和罗格夫之谜(The Meese and Rogoff puzzle)".本文使用非参数方法研究汇率波动及其预测模型,发现较之任何参数方法、半参数方法都具有更大的灵活性.为了克服"维数魔咒",本文提出非参数可加模型来研究汇率预测问题.与现有模型相比,在同样的观察样本期内,非参数可加汇率预测模型有更好的样本外预测能力,这有力地证明了"米斯和罗格夫之谜"并非难以破解.此外,我们将非参数可加汇率模型应用于人民币对美元的汇率预测,其结果仍然揭示了该模型很好的拟合度和预测能力.本文为汇率预测这一研究领域提供了新的研究思路和方法.展开更多
文摘For the purposes of this research, the optimal MLP neural network topology has been designed and tested by means the specific genetic algorithm multi-objective Pareto-Based. The objective of the research is to predict the trend of the ex-change rate Euro/USD up to three days ahead of last data available. The variable of output of the ANN designed is then the daily exchange rate Euro/Dollar and the frequency of data collection of variables of input and the output is daily. By the analysis of the data it is possible to conclude that the ANN model developed can largely predict the trend to three days of exchange rate Euro/USD.
文摘讨论了人工神经网络在金融汇率预报中的应用。其中介绍了广义交互验证 (GeneralizedCrossValidation)法如何应用于确定神经网络中隐层的个数 ,并用实例说明了该方法甚至对复杂的非线性函数也可以得到很好的逼近。详细地介绍了运用人工神经网络作两周向前汇率预报的计算步骤。其平均相对误差 (APE)为 10 E - 3的数量级 ,而国际上通用的状态空间模型及Box Jen kins的ARIMA模型的预报误差都在 10 E -
文摘汇率预测非常困难,其波动具有时变性、随机性和模糊性等统计特征.现存文献中各种方法和模型的预测效果受很多因素影响,其预测力都不及随机游走模型,这就是汇率预测领域所谓的"米斯和罗格夫之谜(The Meese and Rogoff puzzle)".本文使用非参数方法研究汇率波动及其预测模型,发现较之任何参数方法、半参数方法都具有更大的灵活性.为了克服"维数魔咒",本文提出非参数可加模型来研究汇率预测问题.与现有模型相比,在同样的观察样本期内,非参数可加汇率预测模型有更好的样本外预测能力,这有力地证明了"米斯和罗格夫之谜"并非难以破解.此外,我们将非参数可加汇率模型应用于人民币对美元的汇率预测,其结果仍然揭示了该模型很好的拟合度和预测能力.本文为汇率预测这一研究领域提供了新的研究思路和方法.