The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental ...The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental methods for similar simulations. On the basis of the theory of mechanics,the testing system is designed considering initial geostress and dynamic unloading. The system includes an impact unloading gear and in-situ stress loading equipment, and a designed three-link structure and the impact hammer can effectively realize the dynamic excavation of roadways.Meanwhile, a cyclic excavation similar simulation experiment on a deep roadway is conducted in a laboratory. The testing system and the relevant monitoring facilities are utilized, and the unloading effect inside the surrounding rock under the cyclic dynamic excavation is studied. Results show that the cyclic dynamic excavation causes significant unloading only in the nearby rock mass, and the unloading indicators show nonlinear changes.Moreover, when the lateral pressure coefficient is 1.2,the damage is concentrated on both roadsides due to the excavation unloading. Meanwhile, the damage gradually decays as the span increases.展开更多
Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was...Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotr展开更多
基金funded by the National Key R&D Program of China(Grant Nos.2017YFC0603000)the National Natural Foundation of China(Grant Nos.51404011,51674008,51774012,51474006,and 51574006)+2 种基金the Key Task Project in Scientific and Technological Research in AnhuiProvince(Grant No.1604a0802107)the Outstanding Top-notch Talent Cultivation Project in Anhui Province(No.gxbj ZD2016051)the Anhui provincial academic and technical leaders and reserve candidates for academic research activities(No.2015H036)
文摘The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental methods for similar simulations. On the basis of the theory of mechanics,the testing system is designed considering initial geostress and dynamic unloading. The system includes an impact unloading gear and in-situ stress loading equipment, and a designed three-link structure and the impact hammer can effectively realize the dynamic excavation of roadways.Meanwhile, a cyclic excavation similar simulation experiment on a deep roadway is conducted in a laboratory. The testing system and the relevant monitoring facilities are utilized, and the unloading effect inside the surrounding rock under the cyclic dynamic excavation is studied. Results show that the cyclic dynamic excavation causes significant unloading only in the nearby rock mass, and the unloading indicators show nonlinear changes.Moreover, when the lateral pressure coefficient is 1.2,the damage is concentrated on both roadsides due to the excavation unloading. Meanwhile, the damage gradually decays as the span increases.
基金Supported by the National Natural Science Foundation of China(51064009,51464015)the Natural Science Foundation of Guangdong Province of China(2016A030313121)+1 种基金the Higher School Talent Introduction Project of Guangdong Province(A413.0210)the Science and Technology Project of Huizhou City of Guangdong Province of China(2014B020004018)
文摘Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotr