期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
Global Optimum-Based Search Differential Evolution 被引量:8
1
作者 Yang Yu Shangce Gao +1 位作者 Yirui Wang Yuki Todo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期379-394,共16页
In this paper, a global optimum-based search strategy is proposed to alleviate the situation that the differential evolution(DE) usually sticks into a stagnation, especially on complex problems. It aims to reconstruct... In this paper, a global optimum-based search strategy is proposed to alleviate the situation that the differential evolution(DE) usually sticks into a stagnation, especially on complex problems. It aims to reconstruct the balance between exploration and exploitation, and improve the search efficiency and solution quality of DE. The proposed method is activated by recording the number of recently consecutive unsuccessful global optimum updates. It takes the feedback from the global optimum,which makes the search strategy not only refine the current solution quality, but also have a change to find other promising space with better individuals. This search strategy is incorporated with various DE mutation strategies and DE variations. The experimental results indicate that the proposed method has remarkable performance in enhancing search efficiency and improving solution quality. 展开更多
关键词 Differential evolution(de) global optimum memetic algorithm
下载PDF
Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns 被引量:6
2
作者 Pierre Guy Atangana Njock Shui-Long Shen +1 位作者 Annan Zhou Giuseppe Modoni 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1500-1512,共13页
A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computation... A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity. 展开更多
关键词 Artificial neural network(ANN) Differential evolution(de) Jet grouting Model optimization REGULARIZATION
下载PDF
Sequential Fault Diagnosis Using an Inertial Velocity Differential Evolution Algorithm 被引量:4
3
作者 Xiao-Hong Qiu Yu-Ting Hu Bo Li 《International Journal of Automation and computing》 EI CSCD 2019年第3期389-397,共9页
The optimal test sequence design for fault diagnosis is a challenging NP-complete problem.An improved differential evolution(DE)algorithm with additional inertial velocity term called inertial velocity differential ev... The optimal test sequence design for fault diagnosis is a challenging NP-complete problem.An improved differential evolution(DE)algorithm with additional inertial velocity term called inertial velocity differential evolution(IVDE)is proposed to solve the optimal test sequence problem(OTP)in complicated electronic system.The proposed IVDE algorithm is constructed based on adaptive differential evolution algorithm.And it is used to optimize the test sequence sets with a new individual fitness function including the index of fault isolation rate(FIR)satisfied and generate diagnostic decision tree to decrease the test sets and the test cost.The simulation results show that IVDE algorithm can cut down the test cost with the satisfied FIR.Compared with the other algorithms such as particle swarm optimization(PSO)and genetic algorithm(GA),IVDE can get better solution to OTP. 展开更多
关键词 Differential evolution(de) evolutionARY computation FAULT isolation rate(FIR) TESTABILITY FAULT diagnosis
原文传递
Calibration and uniqueness analysis of microparameters for DEM cohesive granular material 被引量:4
4
作者 Songtao Ji Jurij Karlovšek 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期121-136,共16页
The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus a... The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus and Poisson’s ratio,can be calibrated to high accuracy.The best calibration accuracy could reach the sum of relative errors RE_(sum)<0.1%.Most calibrations can be achieved with RE_(sum)<5%within hours or RE_(sum)<1%within 2 days.Based on the calibrated results,microparameters uniqueness analysis was carried out to reveal the correlation between microparameters and the macroscopic mechanical behaviour of material:(1)microparameters effective modulus,tensile strength and normal-to-shear stiffness ratio control the elastic behaviour and stable crack growth,(2)microparameters cohesion and friction angles present a negative linear correlation that controls the axial strain and lateral strain prior to the peak stress,and(3)microparameters friction coefficient controls shear crack friction and slip mainly refers to the unstable crack behaviour.Consideration of more macroparameters to regulate the material mechanical behaviour that is dominated by shear crack and slip motion is highlighted for future study.The DE calibration method is expected to serve as an alternative method to calibrate the DEM cohesive granular material to its peak strength. 展开更多
关键词 Discrete element method(deM) Particle flow code(PFC) Differential evolution(de) Parameter calibration Uniqueness analysis Post-peak behaviour
下载PDF
Improving Dendritic Neuron Model With Dynamic Scale-Free Network-Based Differential Evolution 被引量:2
5
作者 Yang Yu Zhenyu Lei +3 位作者 Yirui Wang Tengfei Zhang Chen Peng Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期99-110,共12页
Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are we... Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers. 展开更多
关键词 Artificial neuron networks(ANNs) dendrite neuron network differential evolution(de) scale-free network
下载PDF
Differential Evolution with Level-Based Learning Mechanism 被引量:2
6
作者 Kangjia Qiao Jing Liang +3 位作者 Boyang Qu Kunjie Yu Caitong Yue Hui Song 《Complex System Modeling and Simulation》 2022年第1期35-58,共24页
To address complex single objective global optimization problems,a new Level-Based Learning Differential Evolution(LBLDE)is developed in this study.In this approach,the whole population is sorted from the best to the ... To address complex single objective global optimization problems,a new Level-Based Learning Differential Evolution(LBLDE)is developed in this study.In this approach,the whole population is sorted from the best to the worst at the beginning of each generation.Then,the population is partitioned into multiple levels,and different levels are used to exert different functions.In each level,a control parameter is used to select excellent exemplars from upper levels for learning.In this case,the poorer individuals can choose more learning exemplars to improve their exploration ability,and excellent individuals can directly learn from the several best individuals to improve the quality of solutions.To accelerate the convergence speed,a difference vector selection method based on the level is developed.Furthermore,specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process.A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants. 展开更多
关键词 level-based learning Differential evolution(de) parameter adaptation exemplar selection
原文传递
Adaptive Dimensional Learning with a Tolerance Framework for the Differential Evolution Algorithm 被引量:2
7
作者 Wei Li Xinqiang Ye +1 位作者 Ying Huang Soroosh Mahmoodi 《Complex System Modeling and Simulation》 2022年第1期59-77,共19页
The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE i... The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE is proposed.The population is divided into an elite subpopulation,an ordinary subpopulation,and an inferior subpopulation according to the fitness values.The ordinary and elite subpopulations are used to maintain the current evolution state and to guide the evolution direction of the population,respectively.The inferior subpopulation learns from the elite subpopulation through the dimensional learning strategy.If the global optimum is not improved in a specified number of iterations,a tolerance mechanism is applied.Under the tolerance mechanism,the inferior and elite subpopulations implement the restart strategy and the reverse dimensional learning strategy,respectively.In addition,the individual status and algorithm status are used to adaptively adjust the control parameters.To evaluate the performance of the proposed algorithm,six state-of-the-art DE algorithm variants are compared on the benchmark functions.The results of the simulation show that the proposed algorithm outperforms other variant algorithms regarding function convergence rate and solution accuracy. 展开更多
关键词 Differential evolution(de) tolerance mechanism dimensional learning parameter adaptation continuous optimization
原文传递
Novel differential evolution algorithm with spatial evolution rules
8
作者 Ding Qingfeng Qiu Xiang 《High Technology Letters》 EI CAS 2017年第4期426-433,共8页
In order to reduce the pressure of parameter selection and avoid trapping into the local optimum,a novel differential evolution( DE) algorithm without crossover rate is proposed. Through embedding cellular automata in... In order to reduce the pressure of parameter selection and avoid trapping into the local optimum,a novel differential evolution( DE) algorithm without crossover rate is proposed. Through embedding cellular automata into the DE algorithm,those interactions among vectors are restricted within cellular structure of neighbors while the cell own evolution,which may be used to balance the tradeoff between exploration and exploitation and then tune the selection pressure. And further more,the orthogonal crossover without crossover rate is used instead of the binomial crossover,which can maintain the population diversity and accelerate the convergence rate. Experimental studies are carried out on a suite of 7 bound-constrained numerical benchmark functions. The results show that the proposed algorithm has better capability of maintaining the population diversity and faster convergence than the classical differential evolution and several classic differential evolution variants. 展开更多
关键词 differential evolution(de) cellular automata orthogonal crossover balancing tradeoff selective pressure
下载PDF
DEPSOSVM:variant of differential evolution based on PSO for image and text data classification 被引量:1
9
作者 Abhishek Dixit Ashish Mani Rohit Bansal 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期223-238,共16页
Purpose-Feature selection is an important step for data pre-processing specially in the case of high dimensional data set.Performance of the data model is reduced if the model is trained with high dimensional data set... Purpose-Feature selection is an important step for data pre-processing specially in the case of high dimensional data set.Performance of the data model is reduced if the model is trained with high dimensional data set,and it results in poor classification accuracy.Therefore,before training the model an important step to apply is the feature selection on the dataset to improve the performance and classification accuracy.Design/methodology/approach-A novel optimization approach that hybridizes binary particle swarm optimization(BPSO)and differential evolution(DE)for fine tuning of SVM classifier is presented.The name of the implemented classifier is given as DEPSOSVM.Findings-This approach is evaluated using 20 UCI benchmark text data classification data set.Further,the performance of the proposed technique is also evaluated on UCI benchmark image data set of cancer images.From the results,it can be observed that the proposed DEPSOSVMtechniques have significant improvement in performance over other algorithms in the literature for feature selection.The proposed technique shows better classification accuracy as well.Originality/value-The proposed approach is different from the previous work,as in all the previous work DE/(rand/1)mutation strategy is used whereas in this study DE/(rand/2)is used and the mutation strategy with BPSO is updated.Another difference is on the crossover approach in our case as we have used a novel approach of comparing best particle with sigmoid function.The core contribution of this paper is to hybridize DE with BPSO combined with SVM classifier(DEPSOSVM)to handle the feature selection problems. 展开更多
关键词 Support vector machine(SVM) Differential evolution(de) Particle swarm optimization(PSO)and Global optimization
原文传递
Strengthened Initialization of Adaptive Cross-Generation Differential Evolution
10
作者 Wei Wan Gaige Wang Junyu Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1495-1516,共22页
Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its conv... Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its convergence and diversity are not satisfactory compared with the latest algorithms.In order to adapt to the current environment,ACGDE requires improvements in many aspects,such as its initialization and mutant operator.In this paper,an enhanced version is proposed,namely SIACGDE.It incorporates a strengthened initialization strategy and optimized parameters in contrast to its predecessor.These improvements make the direction of crossgeneration mutation more clearly and the ability of searching more efficiently.The experiments show that the new algorithm has better diversity and improves convergence to a certain extent.At the same time,SIACGDE outperforms other state-of-the-art algorithms on four metrics of 24 test problems. 展开更多
关键词 Differential evolution(de) multi-objective optimization(MO) opposition-based learning parameter adaptation
下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
11
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 design methodology differential evolution(de) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
下载PDF
基于全寿命周期成本的配电网蓄电池储能系统的优化配置 被引量:138
12
作者 向育鹏 卫志农 +2 位作者 孙国强 孙永辉 沈海平 《电网技术》 EI CSCD 北大核心 2015年第1期264-270,共7页
蓄电池储能具有效率高、使用寿命长、对地理条件要求低等优点,其额定功率和额定容量可以独立配置。以配电网中蓄电池储能系统全寿命周期内总的净收益最大为目标,研究配电网中蓄电池的配置和各时段充/放电值的优化,综合考虑了储能套利收... 蓄电池储能具有效率高、使用寿命长、对地理条件要求低等优点,其额定功率和额定容量可以独立配置。以配电网中蓄电池储能系统全寿命周期内总的净收益最大为目标,研究配电网中蓄电池的配置和各时段充/放电值的优化,综合考虑了储能套利收入、政府电价补贴收入、减少电能转运费、延缓电网升级以及全寿命周期成本等因素。建立了蓄电池储能系统配置的混合优化模型,提出一种基于差分进化和预测-校正内点法的混合算法并进行求解。最后,算例测试比较了钠硫电池、全钒液流电池、多硫化物/溴液流电池、铅酸电池和锂离子电池的配置和净收益,分析了影响经济效益的指标,为蓄电池的配置规划提出了建议,并验证了所建模型和求解算法的可行性。 展开更多
关键词 配电网 蓄电池储能 全寿命周期成本 混合优化 差分进化法 预测-校正内点法
下载PDF
差分进化算法研究进展 被引量:83
13
作者 汪慎文 丁立新 +2 位作者 张文生 郭肇禄 谢承旺 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期283-292,共10页
差分进化算法是一类当前较有实力的实参随机优化算法,已成功解决很多实际问题.由于算法结构简单易于执行,控制参数少且有较强的搜索能力,差分进化算法吸引了众多进化算法学者的关注.本文概述了差分进化算法的基本概念,综述了差分进化算... 差分进化算法是一类当前较有实力的实参随机优化算法,已成功解决很多实际问题.由于算法结构简单易于执行,控制参数少且有较强的搜索能力,差分进化算法吸引了众多进化算法学者的关注.本文概述了差分进化算法的基本概念,综述了差分进化算法的主要变体,讨论它们的优缺点,并指出下一步的改进方向. 展开更多
关键词 进化算法 差分进化算法 启发式
原文传递
基于微分进化算法的时间最优路径规划 被引量:31
14
作者 冯琦 周德云 《计算机工程与应用》 CSCD 北大核心 2005年第12期74-75,222,共3页
提出了一种利用微分进化算法进行机器人路径规划的方法,在极坐标系下采用路径点列的极角和极径作为参数进行个体成员的矢量合成,生成的初始路径点集经过提炼处理极大提高机器人移动速度;仿真结果表明该方法可以解决大范围、多障碍环境... 提出了一种利用微分进化算法进行机器人路径规划的方法,在极坐标系下采用路径点列的极角和极径作为参数进行个体成员的矢量合成,生成的初始路径点集经过提炼处理极大提高机器人移动速度;仿真结果表明该方法可以解决大范围、多障碍环境的机器人路径规划问题。 展开更多
关键词 微分进化算法 路径规划 极坐标
下载PDF
计及VSC-HVDC的交直流系统最优潮流统一混合算法 被引量:41
15
作者 卫志农 季聪 +2 位作者 郑玉平 孙国强 孙永辉 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期635-643,共9页
进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC... 进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC控制方式的限制,容易发生振荡,因此提出一种基于差分进化(differential evolution,DE)和原—对偶内点法(primal-dual interior point method,PDIPM)的统一混合迭代算法。算法的主要思想是以DE算法为框架,对离散变量进行优化,在DE算法的每一次迭代过程中,采用PDIPM对每个DE个体进行连续变量的优化和适应度评估。由于采用PDIPM进行DE种群适应度评估,无需设定VSC-HVDC的控制方式,因此提高了算法的全局寻优能力。多个算例结果表明,该混合算法数值稳定性高,寻优能力强,能很好地解决含两端、多端、多馈入VSC-HVDC的交直流系统最优潮流问题。 展开更多
关键词 电压源换流器 高压直流输电 交直流系统 最优潮流 统一混合算法 原对偶内点法 差分进化算法
下载PDF
基于非支配排序差分进化算法的多目标电网规划 被引量:27
16
作者 黄映 李扬 高赐威 《电网技术》 EI CSCD 北大核心 2011年第3期85-89,共5页
在多目标电网规划问题中,综合考虑经济性、安全可靠性和环境影响等因素后,提出了非支配排序差分进化算法。以电网投资、运行维护费用、网损费用、线路走廊面积最小为目标建立了多目标电网规划模型。非支配排序差分进化算法将Pareto非支... 在多目标电网规划问题中,综合考虑经济性、安全可靠性和环境影响等因素后,提出了非支配排序差分进化算法。以电网投资、运行维护费用、网损费用、线路走廊面积最小为目标建立了多目标电网规划模型。非支配排序差分进化算法将Pareto非支配排序法与差分进化算法相结合,采用动态调整策略调整差分进化算法控制参数,改进了个体拥挤比较机制,提高了算法的全局搜索能力和种群多样性,并基于模糊集理论选取最优折衷解。Garver-6节点和Garver-18节点系统算例结果表明,该算法可以有效生成分布均匀的Pareto最优解集,在求解多目标电网规划问题中具有可行性和优越性。 展开更多
关键词 输电网规划 多目标优化 Pareto非支配排序 差分进化算法
下载PDF
一种新的改进的混合蛙跳算法 被引量:26
17
作者 赵鹏军 邵泽军 《计算机工程与应用》 CSCD 2012年第8期48-50,共3页
针对混合蛙跳算法在优化过程中受初始值影响较大且容易陷入局部最优的缺陷,提出了一个改进的混合蛙跳算法,该算法利用基于对立学习的策略产生初始种群,提高了产生解的质量;在进化过程中,将差分进化有机地嵌入其中,维持了种群的多样性。... 针对混合蛙跳算法在优化过程中受初始值影响较大且容易陷入局部最优的缺陷,提出了一个改进的混合蛙跳算法,该算法利用基于对立学习的策略产生初始种群,提高了产生解的质量;在进化过程中,将差分进化有机地嵌入其中,维持了种群的多样性。数值结果表明,改进的混合蛙跳算法对复杂函数优化问题具有较强的求解能力。 展开更多
关键词 混合蛙跳算法 对立策略 差分进化
下载PDF
基于差异进化和PC集群的并行无功优化 被引量:21
18
作者 梁才浩 段献忠 +1 位作者 钟志勇 黄杰波 《电力系统自动化》 EI CSCD 北大核心 2006年第1期29-34,共6页
提出了一种在线求解电力系统无功优化问题的方法。该方法基于新的差异进化(DE)算法 和并行计算技术,在PC集群上实现优化。IEEE 118节点系统的算例表明:DE算法尽管简单,但 可快速收敛到近似最优解;采用并行差异进化和适当规模的PC集群,... 提出了一种在线求解电力系统无功优化问题的方法。该方法基于新的差异进化(DE)算法 和并行计算技术,在PC集群上实现优化。IEEE 118节点系统的算例表明:DE算法尽管简单,但 可快速收敛到近似最优解;采用并行差异进化和适当规模的PC集群,可大大缩短电力系统无功优 化的计算时间,使之满足在线应用的需要。 展开更多
关键词 无功优化 差异进化 并行计算 PC集群
下载PDF
基于混沌和差分进化的混合粒子群优化算法 被引量:24
19
作者 刘建平 《计算机仿真》 CSCD 北大核心 2012年第2期208-212,共5页
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到... 研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。 展开更多
关键词 混合算法 粒子群优化 差分进化 混沌
下载PDF
基于DE-SVM的船舶航迹预测模型 被引量:23
20
作者 刘娇 史国友 +1 位作者 杨学钱 朱凯歌 《上海海事大学学报》 北大核心 2020年第1期34-39,115,共7页
为提高船舶航迹预测精度,解决准确建模难度大和神经网络易陷入局部最优的问题,考虑实时获取目标船AIS数据较少的特点,提出一种基于支持向量机(support vector machine,SVM)的航迹预测模型。选择AIS数据中的航速、航向和船舶经纬度作为... 为提高船舶航迹预测精度,解决准确建模难度大和神经网络易陷入局部最优的问题,考虑实时获取目标船AIS数据较少的特点,提出一种基于支持向量机(support vector machine,SVM)的航迹预测模型。选择AIS数据中的航速、航向和船舶经纬度作为样本特征变量;采用小波阈值去噪的方法处理训练数据;采用差分进化(differential evolution,DE)算法对模型内部参数寻优以提高模型收敛速度和预测精度。选取天津港实船某段航迹的AIS数据,比较基于DE-SVM与基于BP神经网络的航迹预测模型的仿真结果。结果表明,基于DE-SVM的航迹预测模型具有更高的预测精度,简单、可行、高效,且耗时少。 展开更多
关键词 航迹预测 支持向量机(SVM) 差分进化(de)算法 AIS BP神经网络
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部