Two new diiron ethanedithiolate complexes Fe2(S2C2H4)(CO)5(2-Ph2PC6H4NH2) (1) and Fez(S2CzH4)(CO)5(2-PhzPC6H4CHzNH2) (2) as active site models of [FeFe] hydrogenases have been prepared by the treatment...Two new diiron ethanedithiolate complexes Fe2(S2C2H4)(CO)5(2-Ph2PC6H4NH2) (1) and Fez(S2CzH4)(CO)5(2-PhzPC6H4CHzNH2) (2) as active site models of [FeFe] hydrogenases have been prepared by the treatment of (,u-SCHzCH2S-μ)Fe2(CO)6 with 2-PhzPC6H4NH2 or 2-PhzPC6H4CH2NH2 in the presence of the decarbonylating agent Me3NO'2H20. As new complexes, both 1 and 2 were fully characterized by elemental analysis, IR and^1H (13C, 31p) NMR spectroscopies. In addition, the molecular structure of complex 1 was established by X-ray crystallography. The crystal of Fe2(S2C2H4)(CO)5(2-PhzPC6H4NH2) (1) crystallizes in orthorhombic, spacegroup Pna21 with a = 20.9461(17), b = 13.7615(11), c = 9.3133(7)A, V= 2684.6(4) A3, Z = 4, C25Hz0FezNOsPS2, Mr = 621.21, Dc = 1.537 g/cm^3, F(000) = 1264. The final R = 0.0197 and wR = 0.0495 for 4605 observed reflections with I 〉 2a(/) and R = 0.0206 and wR = 0.0501 for all data.展开更多
We report the fabrication of polymer/inorganic hybrid solar cells (HSCs) based on CdSe nanorods (NRs) and the semiconducting polymer PTB7. The power conversion efficiency of HSCs can be significantly enhanced by e...We report the fabrication of polymer/inorganic hybrid solar cells (HSCs) based on CdSe nanorods (NRs) and the semiconducting polymer PTB7. The power conversion efficiency of HSCs can be significantly enhanced by engineering the polymer/nanocrystal interface with ethanedithiol (EDT) and 1,4-benzenedithiol (1,4-BDT) treatments and reached 2.58% and 2.79%, respectively. These results were preferable to that of a pyridine-coated NR-based device (1.75%). This improvement was attributed to the thiol groups of EDT and 1,4-BDT, which can tightly coordinate the Cd ions to form Cd-thialate on CdSe NR surfaces, thereby effectively passivating the NR surface and reducing the active layer defects. Therefore, the rate of exciton generation and dissociation was enhanced and led to the improvement of the device performance.展开更多
Self-assembly between Pt(phen)(edt) (phen=phenanthroline, edt=1,2-ethanedithiolate) and Cu(PPh3)2(MeCN)2(ClO4) (PPh3=triphenylphosphine) gave rise to formation of heterohexanuclear complex Pt4Cu2(edt)4(PPh3)6(ClO4)2(4...Self-assembly between Pt(phen)(edt) (phen=phenanthroline, edt=1,2-ethanedithiolate) and Cu(PPh3)2(MeCN)2(ClO4) (PPh3=triphenylphosphine) gave rise to formation of heterohexanuclear complex Pt4Cu2(edt)4(PPh3)6(ClO4)2(4H2O) (1). The complex was characterized by elemental analyses, ES-MS, UV-Vis, IR, 31P NMR spectroscopy and X-ray crystallography. The molecule consists of two Pt2Cu(edt)2(PPh3)3 units which has a centrosymmmetric inversion to give a cyclic heterohexanuclear skeleton. The PtⅡ and CuⅠ center adopt square-planar and trigonal coordination modes, respectively. The compound shows intense emission at 632 nm in the solid state and at 678 nm in frozen dichloromethane glass at 77 K.展开更多
基金supported by Science & Technology Department of Sichuan Province (2011JY0052,2012JY0115, 2010GZ0130)Sichuan University of Science & Engineering (2011RC06, 2012PY04, 2012PY14)
文摘Two new diiron ethanedithiolate complexes Fe2(S2C2H4)(CO)5(2-Ph2PC6H4NH2) (1) and Fez(S2CzH4)(CO)5(2-PhzPC6H4CHzNH2) (2) as active site models of [FeFe] hydrogenases have been prepared by the treatment of (,u-SCHzCH2S-μ)Fe2(CO)6 with 2-PhzPC6H4NH2 or 2-PhzPC6H4CH2NH2 in the presence of the decarbonylating agent Me3NO'2H20. As new complexes, both 1 and 2 were fully characterized by elemental analysis, IR and^1H (13C, 31p) NMR spectroscopies. In addition, the molecular structure of complex 1 was established by X-ray crystallography. The crystal of Fe2(S2C2H4)(CO)5(2-PhzPC6H4NH2) (1) crystallizes in orthorhombic, spacegroup Pna21 with a = 20.9461(17), b = 13.7615(11), c = 9.3133(7)A, V= 2684.6(4) A3, Z = 4, C25Hz0FezNOsPS2, Mr = 621.21, Dc = 1.537 g/cm^3, F(000) = 1264. The final R = 0.0197 and wR = 0.0495 for 4605 observed reflections with I 〉 2a(/) and R = 0.0206 and wR = 0.0501 for all data.
文摘We report the fabrication of polymer/inorganic hybrid solar cells (HSCs) based on CdSe nanorods (NRs) and the semiconducting polymer PTB7. The power conversion efficiency of HSCs can be significantly enhanced by engineering the polymer/nanocrystal interface with ethanedithiol (EDT) and 1,4-benzenedithiol (1,4-BDT) treatments and reached 2.58% and 2.79%, respectively. These results were preferable to that of a pyridine-coated NR-based device (1.75%). This improvement was attributed to the thiol groups of EDT and 1,4-BDT, which can tightly coordinate the Cd ions to form Cd-thialate on CdSe NR surfaces, thereby effectively passivating the NR surface and reducing the active layer defects. Therefore, the rate of exciton generation and dissociation was enhanced and led to the improvement of the device performance.
文摘Self-assembly between Pt(phen)(edt) (phen=phenanthroline, edt=1,2-ethanedithiolate) and Cu(PPh3)2(MeCN)2(ClO4) (PPh3=triphenylphosphine) gave rise to formation of heterohexanuclear complex Pt4Cu2(edt)4(PPh3)6(ClO4)2(4H2O) (1). The complex was characterized by elemental analyses, ES-MS, UV-Vis, IR, 31P NMR spectroscopy and X-ray crystallography. The molecule consists of two Pt2Cu(edt)2(PPh3)3 units which has a centrosymmmetric inversion to give a cyclic heterohexanuclear skeleton. The PtⅡ and CuⅠ center adopt square-planar and trigonal coordination modes, respectively. The compound shows intense emission at 632 nm in the solid state and at 678 nm in frozen dichloromethane glass at 77 K.