On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and becaus...On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.展开更多
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
为了准确检测老年人跌倒事件的发生,提出了一种结合姿态估计与Bi-LSTM网络的人体跌倒检测算法。首先采用YOLOv3网络检测人体目标,利用人体姿态估计网络HRNet获取人体关键点;然后在直角坐标系中提取表达人体活动的新特征;最后构建多层Bi-...为了准确检测老年人跌倒事件的发生,提出了一种结合姿态估计与Bi-LSTM网络的人体跌倒检测算法。首先采用YOLOv3网络检测人体目标,利用人体姿态估计网络HRNet获取人体关键点;然后在直角坐标系中提取表达人体活动的新特征;最后构建多层Bi-LSTM网络并添加注意力机制进行跌倒检测。该方法在公开数据集UR FALL Detection数据集上的准确率达到97.1%。实验结果表明,该方法与先进方法相比取得较好的效果。展开更多
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)
文摘On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
文摘为了准确检测老年人跌倒事件的发生,提出了一种结合姿态估计与Bi-LSTM网络的人体跌倒检测算法。首先采用YOLOv3网络检测人体目标,利用人体姿态估计网络HRNet获取人体关键点;然后在直角坐标系中提取表达人体活动的新特征;最后构建多层Bi-LSTM网络并添加注意力机制进行跌倒检测。该方法在公开数据集UR FALL Detection数据集上的准确率达到97.1%。实验结果表明,该方法与先进方法相比取得较好的效果。