The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, th...Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.展开更多
A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved ...A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.展开更多
In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the...In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the global existence and uniqueness of classical solutions to the initial boundary value problem for time-dependent Ginzburg-Landau equations.展开更多
Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were dete...Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up- regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption /ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, ii were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.展开更多
The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides incre...The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme.展开更多
Interconnected power systems that link several countries and fully utilize their individual resources in a complementary manner are becoming increasingly important.As these systems enhanee accommodation of renewable e...Interconnected power systems that link several countries and fully utilize their individual resources in a complementary manner are becoming increasingly important.As these systems enhanee accommodation of renewable energy,they also represent a move toward low-carbon and low-emissi on power systems.In this paper,a low-carb on dispatch model is proposed to coo rd i nate the gen erati on output betwee n several coun tries where the carb on emissi on constraint is a priority.An adjustable robust optimization approach is used to find the optimal solution under the worst-case scenario to address the uncertainties associated with renewable energy resources.A specific constraint is that the area control error for each country should be self-balanced.Furthermore,a reformation using participation factors is presented to simplify the proposed robust dispatch model.Simulation results for practical interconnected power systems in northeast Asian countries verify the effectiveness of the proposed model.展开更多
As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becomi...As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becoming an important factor that affects the scale of investment in new energy.This paper focuses on the weather risks faced by wind power producers.By studying current research on weather index insurance in China and abroad,the functions and design methods for weather index insurance have been clarified.In addition,the feasibility of wind-power generation index insurance is discussed.The calculation methods for wind power generation index and the weather index insurance pricing methods for wind power enterprises are proposed.A weather index insurance model for wind power generation was established.The rationality and feasibility of the weather index insurance model proposed in this paper were verified using data from an existing power plant.The simulation results show that wind power enterprises can effectively avoid economic losses caused by weather risks through weather index insurance.展开更多
When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the e...When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the exchange rate.It is thus necessary to overcome the problems associated with the transaction settlement,change in the trading model data,and trading strategy in the transnational transaction deduction.To overcome the problem of trade settlement,this paper proposes the use of a digital currency(energy currency)for the cross-border electricity trading settlement based on the special drawing rights of the International Monetary Fund,which is controlled by the Global Energy Interconnection Development and Cooperation Organization(GEIDCO),to enable the proposed currency to become a stable digital currency.The traders can use the energy coins as a unit of currency for quotes,combined with the data pertaining to the changes in the energy information obtained from the GEI framework and data regarding the optimally extrapolated reference trading indicators.To realize the implementation of the multi-trader concurrent transaction deduction using a microservice architecture,this paper proposes a method of computing the microservice and synchronous interaction among the traders,based on the database table data,because the large amount of computation is required to be accomplished asynchronously with a single process.The key technology behind these cross-national electricity trading simulations can not only enable the GEI transnational traders to performed daily real-time trading,but it also demonstrates the advantages of the rapid settlement of the energy currency and the realization of a stable payment in the global energy interconnection cross-border electricity trading.展开更多
The Asia Pacific Economic Cooperation(APEC)comprises of the world’s largest producers and consumers of energy,accounting for 60.3%of primary energy supply,50.0%of final energy consumption,and 63.0%of electricity gene...The Asia Pacific Economic Cooperation(APEC)comprises of the world’s largest producers and consumers of energy,accounting for 60.3%of primary energy supply,50.0%of final energy consumption,and 63.0%of electricity generation worldwide in 2016.This study discusses the primary energy supply and final energy consumption situation of the APEC and analyzes the characteristics of electricity in terms of its generation structure based on fuel,consumption by the end-use sector,access to electricity,and so on.The renewable energy and electricity generation projections up to 2030 based on trends in the APEC are also assessed.It is seen that electricity in final energy consumption has been on an upward trend,with an average annual growth rate of about 4.8%during 2006–2016,in 2016,its share reached 24.3%.The industry sector consumes the largest share of electricity,accounting for about 45.5%in 2016.Coal supply and consumption peaked in 2011 and then began to decline,while renewable energy has been on an upward trend,with its primary energy supply share increasing from 4.80%in 2010 to 6.29%in 2016.Solar photovoltaic and onshore wind power are on the verge of costing less than the operating cost of existing coal-fired plants in 2018.In the APEC’s target scenario in which renewable energy is doubled,the predicted net growth from 2017 to 2030 of solar,wind,and hydro power is about 963,497,and 157 GW,respectively,and to reach this target,the APEC economies need to accelerate renewable energy development.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61265004 and 51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20125314120018)
文摘Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
文摘A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.
基金Supported by National Natural Science Foundation of China(11201415,11571159)Program for New Century Excellent Talents in Fujian Province University(JA14191)
文摘In this paper, we prove the existence of global classical solutions to time-dependent Ginzburg-Landau(TDGL) equations. By the properties of Besov and Sobolev spaces, together with the energy method, we establish the global existence and uniqueness of classical solutions to the initial boundary value problem for time-dependent Ginzburg-Landau equations.
基金supported by the National High-technology Project of China (2006AA100103)the Key Project of Henan Province of China (0620010200)
文摘Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up- regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption /ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, ii were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.
基金supported by the Corporation Science and Technology Program of Global Energy Interconnection Group Ltd. (GEIGC-D-[2018]024)by the National Natural Science Foundation of China (61472042, 61772079)
文摘The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme.
基金the Science and Technology Foundation of Global Energy Interconnection Group Co.,Ltd.(No.524500180012)National Natural Science Foundation of China(No.51977166).
文摘Interconnected power systems that link several countries and fully utilize their individual resources in a complementary manner are becoming increasingly important.As these systems enhanee accommodation of renewable energy,they also represent a move toward low-carbon and low-emissi on power systems.In this paper,a low-carb on dispatch model is proposed to coo rd i nate the gen erati on output betwee n several coun tries where the carb on emissi on constraint is a priority.An adjustable robust optimization approach is used to find the optimal solution under the worst-case scenario to address the uncertainties associated with renewable energy resources.A specific constraint is that the area control error for each country should be self-balanced.Furthermore,a reformation using participation factors is presented to simplify the proposed robust dispatch model.Simulation results for practical interconnected power systems in northeast Asian countries verify the effectiveness of the proposed model.
基金supported by the State Grid Science and Technology Project (Research on Transnational Energy Interaction Simulation and Deduction Technologies of Global Energy Interconnection, JS71-17-004)
文摘As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becoming an important factor that affects the scale of investment in new energy.This paper focuses on the weather risks faced by wind power producers.By studying current research on weather index insurance in China and abroad,the functions and design methods for weather index insurance have been clarified.In addition,the feasibility of wind-power generation index insurance is discussed.The calculation methods for wind power generation index and the weather index insurance pricing methods for wind power enterprises are proposed.A weather index insurance model for wind power generation was established.The rationality and feasibility of the weather index insurance model proposed in this paper were verified using data from an existing power plant.The simulation results show that wind power enterprises can effectively avoid economic losses caused by weather risks through weather index insurance.
基金supported by the State Grid Science and Technology Project (Research on Transnational Energy Interaction Simulation and Deduction Technologies of the Global Energy Interconnection, JS71-17-004)
文摘When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the exchange rate.It is thus necessary to overcome the problems associated with the transaction settlement,change in the trading model data,and trading strategy in the transnational transaction deduction.To overcome the problem of trade settlement,this paper proposes the use of a digital currency(energy currency)for the cross-border electricity trading settlement based on the special drawing rights of the International Monetary Fund,which is controlled by the Global Energy Interconnection Development and Cooperation Organization(GEIDCO),to enable the proposed currency to become a stable digital currency.The traders can use the energy coins as a unit of currency for quotes,combined with the data pertaining to the changes in the energy information obtained from the GEI framework and data regarding the optimally extrapolated reference trading indicators.To realize the implementation of the multi-trader concurrent transaction deduction using a microservice architecture,this paper proposes a method of computing the microservice and synchronous interaction among the traders,based on the database table data,because the large amount of computation is required to be accomplished asynchronously with a single process.The key technology behind these cross-national electricity trading simulations can not only enable the GEI transnational traders to performed daily real-time trading,but it also demonstrates the advantages of the rapid settlement of the energy currency and the realization of a stable payment in the global energy interconnection cross-border electricity trading.
基金sponsored by the National Key Research and Development Program of China (Grant No. 2018YFC0704400)the Programmer of Introducing Talents (Grant No. B13011)
文摘The Asia Pacific Economic Cooperation(APEC)comprises of the world’s largest producers and consumers of energy,accounting for 60.3%of primary energy supply,50.0%of final energy consumption,and 63.0%of electricity generation worldwide in 2016.This study discusses the primary energy supply and final energy consumption situation of the APEC and analyzes the characteristics of electricity in terms of its generation structure based on fuel,consumption by the end-use sector,access to electricity,and so on.The renewable energy and electricity generation projections up to 2030 based on trends in the APEC are also assessed.It is seen that electricity in final energy consumption has been on an upward trend,with an average annual growth rate of about 4.8%during 2006–2016,in 2016,its share reached 24.3%.The industry sector consumes the largest share of electricity,accounting for about 45.5%in 2016.Coal supply and consumption peaked in 2011 and then began to decline,while renewable energy has been on an upward trend,with its primary energy supply share increasing from 4.80%in 2010 to 6.29%in 2016.Solar photovoltaic and onshore wind power are on the verge of costing less than the operating cost of existing coal-fired plants in 2018.In the APEC’s target scenario in which renewable energy is doubled,the predicted net growth from 2017 to 2030 of solar,wind,and hydro power is about 963,497,and 157 GW,respectively,and to reach this target,the APEC economies need to accelerate renewable energy development.