Powdery mildew, caused by Erysiphe pisi D.C., is a major constraint to pea production worldwide. The pea cultivar Xucai 1 has shown high resistance to E. pisi under greenhouse and field conditions. The objectives of t...Powdery mildew, caused by Erysiphe pisi D.C., is a major constraint to pea production worldwide. The pea cultivar Xucai 1 has shown high resistance to E. pisi under greenhouse and field conditions. The objectives of this study were to identify and characterize genes conferring resistance to powdery mildew in Xucai 1. Three crosses, Qizhen 76 × Xucai 1,Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6, were made to generate populations for genetic analysis. The resistance to E. pisi and segregation ratios in the F_1, F_2, and F_(2:3)populations suggested a single recessive gene conferring the resistance of Xucai 1. Bulked segregant analysis was used to map the resistance gene using two F2 populations. The resistance gene was close to markers AD60 and c5 DNAmet on linkage group VI with genetic distances of9.9 c M and 15.4 c M in the Xucai 1 × Bawan 6 F_2 population and 8.7 c M and 8.1 c M in the Qizhen 76 × Xucai 1 F_2 population, respectively, suggesting that the resistance gene was an er1 allele. This hypothesis was confirmed by comparison of the c DNA sequences of the Ps MLO1 gene between the parents and the Ps MLO1 wild type. Three distinct types of transcripts in Xucai 1, characterized by a 129-bp deletion and 155- and 220-bp insertions,were detected, consistent with the structure of the er1-2 allele. We concluded that resistance in Xucai 1 was conferred by er1-2 and that its linked markers will be useful in pea breeding programs.展开更多
基金supported by the Modern Agro-industry Technology Research System(CARS-09)the Crop Germplasm Conservation and Utilization Program(2014NWB030-14)from the Ministry of Agriculture of Chinathe Scientific Innovation Program of Chinese Academy of Agricultural Sciences
文摘Powdery mildew, caused by Erysiphe pisi D.C., is a major constraint to pea production worldwide. The pea cultivar Xucai 1 has shown high resistance to E. pisi under greenhouse and field conditions. The objectives of this study were to identify and characterize genes conferring resistance to powdery mildew in Xucai 1. Three crosses, Qizhen 76 × Xucai 1,Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6, were made to generate populations for genetic analysis. The resistance to E. pisi and segregation ratios in the F_1, F_2, and F_(2:3)populations suggested a single recessive gene conferring the resistance of Xucai 1. Bulked segregant analysis was used to map the resistance gene using two F2 populations. The resistance gene was close to markers AD60 and c5 DNAmet on linkage group VI with genetic distances of9.9 c M and 15.4 c M in the Xucai 1 × Bawan 6 F_2 population and 8.7 c M and 8.1 c M in the Qizhen 76 × Xucai 1 F_2 population, respectively, suggesting that the resistance gene was an er1 allele. This hypothesis was confirmed by comparison of the c DNA sequences of the Ps MLO1 gene between the parents and the Ps MLO1 wild type. Three distinct types of transcripts in Xucai 1, characterized by a 129-bp deletion and 155- and 220-bp insertions,were detected, consistent with the structure of the er1-2 allele. We concluded that resistance in Xucai 1 was conferred by er1-2 and that its linked markers will be useful in pea breeding programs.