A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near-independent crossings or independent crossings, say NIC-planar graph or IC-planar graph...A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near-independent crossings or independent crossings, say NIC-planar graph or IC-planar graph, is a 1-planar graph with the restriction that for any two crossings the four crossed edges are incident with at most one common vertex or no common vertices, respectively. In this paper, we prove that each 1-planar graph, NIC-planar graph or IC-planar graph with maximum degree A at least 15, 13 or 12 has an equitable △-coloring, respectively. This verifies the well-known Chen-Lih-Wu Conjecture for three classes of 1-planar graphs and improves some known results.展开更多
It has been known that determining the exact value of vertex distinguishing edge index X '8(G) of a graph G is difficult, even for simple classes of graphs such as paths, cycles, bipartite complete graphs, complete...It has been known that determining the exact value of vertex distinguishing edge index X '8(G) of a graph G is difficult, even for simple classes of graphs such as paths, cycles, bipartite complete graphs, complete, graphs, and graphs with maximum degree 2. Let rid(G) denote the number of vertices of degree d in G, and let X'es(G) be the equitable vertex distinguishing edge index of G. We show that a tree T holds nl (T) ≤ X 's (T) ≤ n1 (T) + 1 and X's(T) = X'es(T) if T satisfies one of the following conditions (i) n2(T) ≤△(T) or (ii) there exists a constant c with respect to 0 〈 c 〈 1 such that n2(T) △ cn1(T) and ∑3 ≤d≤△(T)nd(T) ≤ (1 - c)n1(T) + 1.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM1010)the Fundamental Research Funds for the Central Universities(No.JB170706)+5 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130203120021)the National Natural Science Foundation of China(No.11301410)the National Natural Science Foundation of China(No.11501316)the Shandong Provincial Natural Science Foundation,China(No.ZR2014AQ001)the China Postdoctoral Science Foundation(No.2015M570569)supported by the Natural Science Foundation of Xinjiang Province of China(No.2015211A003)
文摘A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near-independent crossings or independent crossings, say NIC-planar graph or IC-planar graph, is a 1-planar graph with the restriction that for any two crossings the four crossed edges are incident with at most one common vertex or no common vertices, respectively. In this paper, we prove that each 1-planar graph, NIC-planar graph or IC-planar graph with maximum degree A at least 15, 13 or 12 has an equitable △-coloring, respectively. This verifies the well-known Chen-Lih-Wu Conjecture for three classes of 1-planar graphs and improves some known results.
基金supported by the National Natural Science Foundation of China (61163054),supported by the National Natural Science Foundation of China (61163037)
文摘It has been known that determining the exact value of vertex distinguishing edge index X '8(G) of a graph G is difficult, even for simple classes of graphs such as paths, cycles, bipartite complete graphs, complete, graphs, and graphs with maximum degree 2. Let rid(G) denote the number of vertices of degree d in G, and let X'es(G) be the equitable vertex distinguishing edge index of G. We show that a tree T holds nl (T) ≤ X 's (T) ≤ n1 (T) + 1 and X's(T) = X'es(T) if T satisfies one of the following conditions (i) n2(T) ≤△(T) or (ii) there exists a constant c with respect to 0 〈 c 〈 1 such that n2(T) △ cn1(T) and ∑3 ≤d≤△(T)nd(T) ≤ (1 - c)n1(T) + 1.