期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
1
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(pdes) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
A physics-informed deep learning framework for spacecraft pursuit-evasion task assessment
2
作者 Fuyunxiang YANG Leping YANG Yanwei ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期363-376,共14页
Qualitative spacecraft pursuit-evasion problem which focuses on feasibility is rarely studied because of high-dimensional dynamics,intractable terminal constraints and heavy computational cost.In this paper,A physics-... Qualitative spacecraft pursuit-evasion problem which focuses on feasibility is rarely studied because of high-dimensional dynamics,intractable terminal constraints and heavy computational cost.In this paper,A physics-informed framework is proposed for the problem,providing an intuitive method for spacecraft threat relationship determination,situation assessment,mission feasibility analysis and orbital game rules summarization.For the first time,situation adjustment suggestions can be provided for the weak player in orbital game.First,a dimension-reduction dynamics is derived in the line-of-sight rotation coordinate system and the qualitative model is determined,reducing complexity and avoiding the difficulty of target set presentation caused by individual modeling.Second,the Backwards Reachable Set(BRS)of the target set is used for state space partition and capture zone presentation.Reverse-time analysis can eliminate the influence of changeable initial state and enable the proposed framework to analyze plural situations simultaneously.Third,a time-dependent Hamilton-Jacobi-Isaacs(HJI)Partial Differential Equation(PDE)is established to describe BRS evolution driven by dimension-reduction dynamics,based on level set method.Then,Physics-Informed Neural Networks(PINNs)are extended to HJI PDE final value problem,supporting orbital game rules summarization through capture zone evolution analysis.Finally,numerical results demonstrate the feasibility and efficiency of the proposed framework. 展开更多
关键词 Spacecraft pursuit-evasion Qualitative differential game Physics-Informed Neural Networks(PINNs) Reachability analysis Hamilton-Jacobi-Isaacs(HJI) Partial Differential equations(pdes)
原文传递
Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations
3
作者 Ernie Tsybulnik Xiaozhi Zhu Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1339-1364,共26页
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th... High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Weighted essentially non-oscillatory(WENO)schemes Multi-resolution WENO schemes Sparse grids High spatial dimensions Hyperbolic partial differential equations(pdes)
下载PDF
Solving PDEs with a Hybrid Radial Basis Function:Power-Generalized Multiquadric Kernel
4
作者 Cem Berk Senel Jeroen van Beeck Atakan Altinkaynak 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第5期1161-1180,共20页
Radial Basis Function(RBF)kernels are key functional forms for advanced solutions of higher-order partial differential equations(PDEs).In the present study,a hybrid kernel was developed for meshless solutions of PDEs ... Radial Basis Function(RBF)kernels are key functional forms for advanced solutions of higher-order partial differential equations(PDEs).In the present study,a hybrid kernel was developed for meshless solutions of PDEs widely seen in several engineering problems.This kernel,Power-Generalized Multiquadric-Power-GMQ,was built up by vanishing the dependence of e,which is significant since its selection induces severe problems regarding numerical instabilities and convergence issues.Another drawback of e-dependency is that the optimal e value does not exist in perpetuity.We present the Power-GMQ kernel which combines the advantages of Radial Power and Generalized Multiquadric RBFs in a generic formulation.Power-GMQ RBF was tested in higher-order PDEs with particular boundary conditions and different domains.RBF-Finite Difference(RBF-FD)discretization was also implemented to investigate the characteristics of the proposed RBF.Numerical results revealed that our proposed kernel makes similar or better estimations as against to the Gaussian and Multiquadric kernels with a mild increase in computational cost.Gauss-QR method may achieve better accuracy in some cases with considerably higher computational cost.By using Power-GMQ RBF,the dependency of solution on e was also substantially relaxed and consistent error behavior were obtained regardless of the selected e accompanied. 展开更多
关键词 Meshfree collocation methods Radial Basis Function(RBF) partial differential equations(pdes)
原文传递
末端有未知扰动的分布参数柔性机械臂的鲁棒边界控制 被引量:15
5
作者 吴忻生 邓军 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第4期511-518,共8页
本文研究在柔性机械臂的末端具有未知扰动的边界控制,以降低机械臂的振动.柔性机械臂的动态特性由偏微分方程表示的分布参数模型描述.在机械臂的末端边界基于Lyapunov直接法进行控制,以调节机械臂的振动.应用本文所提出的边界控制方法,... 本文研究在柔性机械臂的末端具有未知扰动的边界控制,以降低机械臂的振动.柔性机械臂的动态特性由偏微分方程表示的分布参数模型描述.在机械臂的末端边界基于Lyapunov直接法进行控制,以调节机械臂的振动.应用本文所提出的边界控制方法,可达到外界干扰下的指数稳定性.所提出的控制方法与系统参数无关,可确保在参数变化下系统具有鲁棒性.最后对所提控制方法的有效性进行了数值模拟. 展开更多
关键词 边界控制 偏微分方程 分布参数模型 LYAPUNOV直接法 指数稳定性
下载PDF
基于水平集的多运动目标时空分割与跟踪 被引量:8
6
作者 于慧敏 徐艺 +1 位作者 刘继忠 高晓颖 《中国图象图形学报》 CSCD 北大核心 2007年第7期1218-1223,共6页
针对背景运动时的运动目标分割问题,提出了一种对视频序列中的多个运动目标进行分割和跟踪的新方法。该方法着眼于运动的且较为复杂的背景,首先利用光流约束方程和背景运动模型建立一个基于时空域的能量函数,然后用该函数进行背景运动... 针对背景运动时的运动目标分割问题,提出了一种对视频序列中的多个运动目标进行分割和跟踪的新方法。该方法着眼于运动的且较为复杂的背景,首先利用光流约束方程和背景运动模型建立一个基于时空域的能量函数,然后用该函数进行背景运动速度的估算和运动目标的分割和跟踪。而时空域中的运动目标的最佳分割,乃是通过使该能量函数最小化来驱动时空曲面演化实现。时空曲面的演化采用了水平集PDEs(Partial Differential Equations)方法。实验中,用实际的图像序列验证了该算法及其数值实现。实验表明,该方法能够同时进行背景运动速度的估算、运动目标的分割和跟踪。 展开更多
关键词 运动目标分割 运动目标跟踪 水平集 偏微分方程组 光流
下载PDF
Perceptual Contrast-Based Image Fusion: A Variational Approach 被引量:6
7
作者 WANG Chao YE Zhong-Fu 《自动化学报》 EI CSCD 北大核心 2007年第2期132-137,共6页
本地对比,或变化,在主要是从来源图象保存重要信息到熔化结果的图象熔化起一个重要作用。威伯的法律告诉我们在不同背景下面的一样的变化将引起不同感性的感情,因此,一个理想的图象处理器不得不考虑视觉心理学和心物学的效果。这份... 本地对比,或变化,在主要是从来源图象保存重要信息到熔化结果的图象熔化起一个重要作用。威伯的法律告诉我们在不同背景下面的一样的变化将引起不同感性的感情,因此,一个理想的图象处理器不得不考虑视觉心理学和心物学的效果。这份报纸考虑人的视觉系统(HVS ) 的性质并且从每幅来源图象把量的感性的变化转移到结果。把 just-noticeable-difference (JND ) 用作测量, multiband 图象的感性的对比作为一个目标被获得。我们构造一个功能的极值问题发现一幅单身的乐队图象,或熔化结果,它有最近感性的对比到目标一个。经由变化途径, Euler-Lagrange 方程被导出,并且一次坡度降下重复被采用。试验性的结果证明这个方法感性地好。 展开更多
关键词 表象聚变 变化方法 知觉衬比度 HVS pdes 人工智能
下载PDF
面向偏微分方程的连续反演控制算法综述 被引量:7
8
作者 李晓光 刘金琨 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第7期825-832,共8页
连续反演控制算法是一种面向偏微分方程(partial differential equations,PDEs)模型控制对象,配合边界控制方式的分布参数系统(distributed parameter systems,DPSs)控制算法.该算法基于Volterra映射运算,思路较为新颖,具有鲁棒性、逆... 连续反演控制算法是一种面向偏微分方程(partial differential equations,PDEs)模型控制对象,配合边界控制方式的分布参数系统(distributed parameter systems,DPSs)控制算法.该算法基于Volterra映射运算,思路较为新颖,具有鲁棒性、逆最优性,便于获得显式的精确控制律和闭环系统的精确解,并能结合观测器、自适应控制等领域已取得的成果拓展应用范围.本文概述了连续反演算法的基本原理和设计过程,总结了该算法在抛物线偏微分模型、双曲线偏微分模型、复合偏微分模型、非线性偏微分模型等各方面的最新进展,最后归纳了该算法的主要特点,并探讨了未来研究的发展方向. 展开更多
关键词 连续反演控制算法 偏微分方程 分布参数系统 边界控制 Volterra映射
下载PDF
Numerical Solution of Parabolic in Partial Differential Equations (PDEs) in One and Two Space Variable
9
作者 Mariam Almahdi Mohammed Mu’lla Amal Mohammed Ahmed Gaweash Hayat Yousuf Ismail Bakur 《Journal of Applied Mathematics and Physics》 2022年第2期311-321,共11页
In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t&l... In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations. 展开更多
关键词 Partial Differential equations (pdes) Homentropic Spatial Derivatives with Finite Differences Central Differences Finite Differences
下载PDF
An Accurate Numerical Integrator for the Solution of Black Scholes Financial Model Equation
10
作者 Iyakino P. Akpan Johnson O. Fatokun 《American Journal of Computational Mathematics》 2015年第3期283-290,共8页
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The ev... In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10. 展开更多
关键词 BLACK Scholes EQUATION Partial Differential equations (pdes) Method of Lines (MOL) L-Stable Trapezoidal-Like INTEGRATOR
下载PDF
A Conceptual Numerical Model of the Wave Equation Using the Complex Variable Boundary Element Method
11
作者 Bryce D. Wilkins Theodore V. Hromadka Randy Boucher 《Applied Mathematics》 2017年第5期724-735,共12页
In this work, a conceptual numerical solution of the two-dimensional wave partial differential equation (PDE) is developed by coupling the Complex Variable Boundary Element Method (CVBEM) and a generalized Fourier ser... In this work, a conceptual numerical solution of the two-dimensional wave partial differential equation (PDE) is developed by coupling the Complex Variable Boundary Element Method (CVBEM) and a generalized Fourier series. The technique described in this work is suitable for modeling initial-boundary value problems governed by the wave equation on a rectangular domain with Dirichlet boundary conditions and an initial condition that is equal on the boundary to the boundary conditions. The new numerical scheme is based on the standard approach of decomposing the global initial-boundary value problem into a steady-state component and a time-dependent component. The steady-state component is governed by the Laplace PDE and is modeled with the CVBEM. The time-dependent component is governed by the wave PDE and is modeled using a generalized Fourier series. The approximate global solution is the sum of the CVBEM and generalized Fourier series approximations. The boundary conditions of the steady-state component are specified as the boundary conditions from the global BVP. The boundary conditions of the time-dependent component are specified to be identically zero. The initial condition of the time-dependent component is calculated as the difference between the global initial condition and the CVBEM approximation of the steady-state solution. Additionally, the generalized Fourier series approximation of the time-dependent component is fitted so as to approximately satisfy the derivative of the initial condition. It is shown that the strong formulation of the wave PDE is satisfied by the superposed approximate solutions of the time-dependent and steady-state components. 展开更多
关键词 Complex Variable Boundary Element Method (CVBEM) Partial Differential equations (pdes) NUMERICAL Solution Techniques LAPLACE EQUATION Wave EQUATION
下载PDF
一阶双曲构建Hill密码及计算机模拟
12
作者 吴礼燕 姚正安 杜毅 《现代计算机》 2008年第12期41-43,51,共4页
讨论用PDEs构建Hill密码的方法。以一阶线性非齐次双曲方程混合问题的形式给出加、解密问题的模型,由差分格式算法设计可用于加、解密的矩阵方程。改进的Hill密码系统中,矩阵变化多样、密钥空间大且便于传输和管理。用MatLab编制软件实... 讨论用PDEs构建Hill密码的方法。以一阶线性非齐次双曲方程混合问题的形式给出加、解密问题的模型,由差分格式算法设计可用于加、解密的矩阵方程。改进的Hill密码系统中,矩阵变化多样、密钥空间大且便于传输和管理。用MatLab编制软件实现加、解过程并对部分结果进行分析。 展开更多
关键词 一阶双曲方程 HILL密码 偏微分方程(pdes)
下载PDF
梯度角约束图像插值 被引量:1
13
作者 詹毅 王明辉 李梦 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第6期770-776,共7页
为了使插值的图像既保持光滑的图像轮廓又获得清晰的图像边缘,提出一种梯度角约束图像插值方法.首先证明了局部恒定的梯度角约束插值等价于总变分最小化;在此基础上,提出一个具有更强连续性的梯度角约束,由这个约束条件导出的三阶偏微... 为了使插值的图像既保持光滑的图像轮廓又获得清晰的图像边缘,提出一种梯度角约束图像插值方法.首先证明了局部恒定的梯度角约束插值等价于总变分最小化;在此基础上,提出一个具有更强连续性的梯度角约束,由这个约束条件导出的三阶偏微分方程使插值的图像既可以保证水平线方向的连续性,又减小图像边缘的宽度;最后证明了插值方程中正则项的对比不变性.通过数值实验证明了该方法的有效性. 展开更多
关键词 图像插值 梯度角 偏微分方程
下载PDF
含分布Henstock-Kurzweil积分的一阶拟线性偏微分方程 被引量:1
14
作者 陈彦蓉 叶国菊 +1 位作者 刘尉 梅慧 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期490-494,共5页
利用一阶拟线性偏微分方程所对应的特征方程(常微分方程组),研究含有分布Henstock-Kurzweil积分的一阶拟线性偏微分方程,证明了其解的存在性和唯一性,并通过实例说明了该结果的广泛性.
关键词 分布Henstock-Kurzweil积分 分布导数 一阶拟线性偏微分方程
下载PDF
一类积分不等式及其变分计算
15
作者 王贝 雷雨田 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期957-960,共4页
利用Hardy-Littlewood-Sobolev不等式和Wolff型积分不等式得到了Wolff型位势的Lp估计,并利用变分方法得到了较加权的HLS型更一般的不等式最佳函数满足的Euler-Lagrange方程.
关键词 Hardy-Littlewood-Sobolev不等式 Wolff位势 变分计算 分数阶微分方程组
下载PDF
两种严格界面向目标误差估计方法的等价性
16
作者 郭孟武 钟宏志 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期362-368,共7页
在模型检验研究中,针对离散误差的后验误差估计扮演着重要角色。在工程有限元分析中,有关问题解答场的标量性质的目标输出量是后验误差分析中人们所关注的。在已有的面向目标误差估计技术中,有2种方法能够提供目标量误差的严格上下界,... 在模型检验研究中,针对离散误差的后验误差估计扮演着重要角色。在工程有限元分析中,有关问题解答场的标量性质的目标输出量是后验误差分析中人们所关注的。在已有的面向目标误差估计技术中,有2种方法能够提供目标量误差的严格上下界,即本构关系误差法与凸目标函数优化法。该文简要总结了这2种方法,并从计算列式的一致性和基本原理的等价性2个层面论证了2种方法的等价性,给出了2种严格界方法的本质均为余能原理的论断。对2种方法等价性的探讨有助于结合2种表达格式的优势,并拓展到更复杂的问题中,形成简明有效的计算列式。 展开更多
关键词 微分方程的数值解法 后验误差估计 面向目标误差估计 本构关系误差 凸目标函数约束优化 严格界 余能原理
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部