AZ31 Mg alloy bar was subjected to 8-pass equal-channel angular pressing(ECAP) at 623 K. Microstructure evolution was observed by optical microscopy(OM) on cross section and X-ray diffraction analysis. The room temper...AZ31 Mg alloy bar was subjected to 8-pass equal-channel angular pressing(ECAP) at 623 K. Microstructure evolution was observed by optical microscopy(OM) on cross section and X-ray diffraction analysis. The room temperature mechanical properties of the ECAP processed specimens were also investigated. A fine-grained structure with an average sub-grain size of 9 μm is obtained after 7 ECAP passes. XRD analysis indicates that after ECAP,in placing of {1 010},planes {1 011} and {1 012} become the dominant directions that are favourable for grain refinement. ECAP processed AZ31 Mg alloy exhibits significant improvement in elongation but decrease in strength. The elongation of the specimen increases continuously up to 2 passes and then remains stable at further passes. This improvement can be related to the evolution of crystallographic texture and the scattered orientation of the basal plane(0001).展开更多
Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was ...Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was found that the microstructure of the billet was heterogeneous across the billet thickness, resulting in the difference in the mechanical properties due to the different deformation conditions. A relatively low strength, high uniform elongation, and high work- hardening rate for the samples at the bottom of the billet was achieved in comparison with those processed at the top. Meanwhile, it was observed that the density of deformation twins increased with the content of N; accordingly, the strength and elongation of the alloys increase with the content of N, resulting in a good strength-ductility combination.展开更多
Equal-channel angular pressing(ECAP) is now recognized as an effective technique for fabricating ultrafine grained materials. The results show that prevalent macroscopic shear banding occurs in ECAP as long as the pre...Equal-channel angular pressing(ECAP) is now recognized as an effective technique for fabricating ultrafine grained materials. The results show that prevalent macroscopic shear banding occurs in ECAP as long as the pressing passes reach 2, and the severe macroscopic shear band extends from bottom to top surface and slants to the longitudinal axis of specimen at an angle of about 45°, develops at regular intervals, with a high shear strain accommodation of about 3.7 within the band. Different families of macroscopic shear bands may cut across each other, and over 60% of sample volume is occupied by macroscopic shear band when the ECAP reaches 4 passes.展开更多
Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sli...Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sliding,were discussed.The ultrafine grains with modified grain boundaries and the high content of fine particles(<1μm)were necessary for attaining high absorbed energy.The results contradict the condition of slip deformation by dislocation motion and coincide with that of grain boundary sliding.Many fine zigzag lines like a mosaic were observed on the side surface of the tested specimens.These observed lines may show grain boundaries appeared by the sliding of grains.展开更多
基金Project(08JK240) supported by the Special Program of Education Bureau of Shaanxi Province, ChinaProject(SLGQD0751) supported by the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China
文摘AZ31 Mg alloy bar was subjected to 8-pass equal-channel angular pressing(ECAP) at 623 K. Microstructure evolution was observed by optical microscopy(OM) on cross section and X-ray diffraction analysis. The room temperature mechanical properties of the ECAP processed specimens were also investigated. A fine-grained structure with an average sub-grain size of 9 μm is obtained after 7 ECAP passes. XRD analysis indicates that after ECAP,in placing of {1 010},planes {1 011} and {1 012} become the dominant directions that are favourable for grain refinement. ECAP processed AZ31 Mg alloy exhibits significant improvement in elongation but decrease in strength. The elongation of the specimen increases continuously up to 2 passes and then remains stable at further passes. This improvement can be related to the evolution of crystallographic texture and the scattered orientation of the basal plane(0001).
基金The National Natural Science Foundation of China(NSFC)under Grant Nos.5130117951331007+1 种基金31370976financially supported this work
文摘Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was found that the microstructure of the billet was heterogeneous across the billet thickness, resulting in the difference in the mechanical properties due to the different deformation conditions. A relatively low strength, high uniform elongation, and high work- hardening rate for the samples at the bottom of the billet was achieved in comparison with those processed at the top. Meanwhile, it was observed that the density of deformation twins increased with the content of N; accordingly, the strength and elongation of the alloys increase with the content of N, resulting in a good strength-ductility combination.
文摘Equal-channel angular pressing(ECAP) is now recognized as an effective technique for fabricating ultrafine grained materials. The results show that prevalent macroscopic shear banding occurs in ECAP as long as the pressing passes reach 2, and the severe macroscopic shear band extends from bottom to top surface and slants to the longitudinal axis of specimen at an angle of about 45°, develops at regular intervals, with a high shear strain accommodation of about 3.7 within the band. Different families of macroscopic shear bands may cut across each other, and over 60% of sample volume is occupied by macroscopic shear band when the ECAP reaches 4 passes.
文摘Al-11%Si(mass fraction)alloy was transformed into a ductile material by equal-channel angular pressing(ECAP)with a rotary die.Two mechanisms at impact test,slip deformation by dislocation motion and grain boundary sliding,were discussed.The ultrafine grains with modified grain boundaries and the high content of fine particles(<1μm)were necessary for attaining high absorbed energy.The results contradict the condition of slip deformation by dislocation motion and coincide with that of grain boundary sliding.Many fine zigzag lines like a mosaic were observed on the side surface of the tested specimens.These observed lines may show grain boundaries appeared by the sliding of grains.