图像匹配是机器视觉领域的基础核心课题,针对当前ORB(oriented FAST and rotatedBRIEF)图像特征匹配算法虽然执行速度快、但是匹配质量不高的问题,提出一种通过极线约束来改进ORB匹配的算法。通过合理设计Hamming阈值大小来提高初始匹...图像匹配是机器视觉领域的基础核心课题,针对当前ORB(oriented FAST and rotatedBRIEF)图像特征匹配算法虽然执行速度快、但是匹配质量不高的问题,提出一种通过极线约束来改进ORB匹配的算法。通过合理设计Hamming阈值大小来提高初始匹配点数量,采用RANSAC(random sample consensus)和8点改进法计算基本矩阵,应用极线约束剔除误匹配保留大量优质匹配点。仿真实验结果证明,算法改进后的优质匹配点数量可达原始算法的23倍,同时极大地提高了匹配点的质量,证明了算法的有效性。展开更多
针对基于传统特征点匹配的双目视觉测量方法误匹配率高和测量精度低的问题,提出了一种基于ORB(Oriented Fast and Rotated Brief)特征与随机抽样一致性(RANSAC)的双目测距方法。首先,基于双目位置信息的极线约束与基于汉明距离的特征匹...针对基于传统特征点匹配的双目视觉测量方法误匹配率高和测量精度低的问题,提出了一种基于ORB(Oriented Fast and Rotated Brief)特征与随机抽样一致性(RANSAC)的双目测距方法。首先,基于双目位置信息的极线约束与基于汉明距离的特征匹配方法删除误匹配点,得到初步筛选的正确匹配点对。然后,基于k维树的近邻点顺序一致性约束方法筛选出初始内点集合,并采用迭代预检验方法提高RANSAC的匹配速度。最后,为了提升测量精度,采用二次曲面拟合得到亚像素点视差并计算实际距离。实验结果表明,本方法可以有效提高特征的匹配速度及测量精度,满足实时测量的要求。展开更多
文摘图像匹配是机器视觉领域的基础核心课题,针对当前ORB(oriented FAST and rotatedBRIEF)图像特征匹配算法虽然执行速度快、但是匹配质量不高的问题,提出一种通过极线约束来改进ORB匹配的算法。通过合理设计Hamming阈值大小来提高初始匹配点数量,采用RANSAC(random sample consensus)和8点改进法计算基本矩阵,应用极线约束剔除误匹配保留大量优质匹配点。仿真实验结果证明,算法改进后的优质匹配点数量可达原始算法的23倍,同时极大地提高了匹配点的质量,证明了算法的有效性。
文摘针对基于传统特征点匹配的双目视觉测量方法误匹配率高和测量精度低的问题,提出了一种基于ORB(Oriented Fast and Rotated Brief)特征与随机抽样一致性(RANSAC)的双目测距方法。首先,基于双目位置信息的极线约束与基于汉明距离的特征匹配方法删除误匹配点,得到初步筛选的正确匹配点对。然后,基于k维树的近邻点顺序一致性约束方法筛选出初始内点集合,并采用迭代预检验方法提高RANSAC的匹配速度。最后,为了提升测量精度,采用二次曲面拟合得到亚像素点视差并计算实际距离。实验结果表明,本方法可以有效提高特征的匹配速度及测量精度,满足实时测量的要求。