Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome...Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people.Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks.Monitoring of pathogenic microorganisms in the air,especially in densely populated areas,may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage.The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation,allocate health resources,and formulate epidemic response policies.This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission,which lays a theoretical foundation for the monitoring and prediction of epidemic development.Secondly,the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized.Subsequently,this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology,atmospheric sciences,environmental sciences,sociology,demography,etc.By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere,this review proposes suggestions for epidemic response,namely,the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.展开更多
The infection caused by porcine epidemic diarrhea virus(PEDV)is associated with high mortality in piglets worldwide.Host factors involved in the efficient replication of PEDV,however,remain largely unknown.Our recent ...The infection caused by porcine epidemic diarrhea virus(PEDV)is associated with high mortality in piglets worldwide.Host factors involved in the efficient replication of PEDV,however,remain largely unknown.Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5(EF-hand protein calmodulin-like 5)following PEDV infection.A further study unveiled a biphasic increase of CALML5 in 2 and 12 h after viral infection.Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge.Moreover,CALML5 depletion reduced PEDV mRNA and protein levels,leading to a one-order-of-magnitude decrease in virus titer.At the early stage of PEDV infection,CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins.CALML5 depletion also suppressed IFN-βand IL-6 production in the PEDV-infected cells,thereby indicating its involvement in negatively regulating the innate immune response.Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.展开更多
基金the Collaborative Research Project of the National Natural Science Foundation of China(L2224041)the Chinese Academy of Sciences(XK2022DXC005)+2 种基金Frontier of Interdisciplinary Research on Monitoring and Prediction of Pathogenic Microorganisms in the AtmosphereSelf-supporting Program of Guangzhou Laboratory(SRPG22-007)Fundamental Research Funds for the Central Universities(lzujbky-2022-kb09).
文摘Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people.Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks.Monitoring of pathogenic microorganisms in the air,especially in densely populated areas,may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage.The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation,allocate health resources,and formulate epidemic response policies.This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission,which lays a theoretical foundation for the monitoring and prediction of epidemic development.Secondly,the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized.Subsequently,this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology,atmospheric sciences,environmental sciences,sociology,demography,etc.By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere,this review proposes suggestions for epidemic response,namely,the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
基金supported by the National Key R&D Program of China(2023YFD1801100)the National Natural Science Foundation of China(32172821)a CAU-Grant for the Prevention and Control of Immunosuppressive Disease in Animals(CAU-G-PCIDA)of the China Agricultural University.
文摘The infection caused by porcine epidemic diarrhea virus(PEDV)is associated with high mortality in piglets worldwide.Host factors involved in the efficient replication of PEDV,however,remain largely unknown.Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5(EF-hand protein calmodulin-like 5)following PEDV infection.A further study unveiled a biphasic increase of CALML5 in 2 and 12 h after viral infection.Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge.Moreover,CALML5 depletion reduced PEDV mRNA and protein levels,leading to a one-order-of-magnitude decrease in virus titer.At the early stage of PEDV infection,CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins.CALML5 depletion also suppressed IFN-βand IL-6 production in the PEDV-infected cells,thereby indicating its involvement in negatively regulating the innate immune response.Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.